Breast Cancer

, Volume 13, Issue 2, pp 129–136 | Cite as

New development in intracrinology of breast carcinoma

  • Hironobu SasanoEmail author
  • Takashi Suzuki
  • Taisuke Nakata
  • Takuya Moriya
Review Article


Intratumoral metabolism and synthesis of estrogens as a result of the interactions of various enzymes are considered to play very important roles in the pathogenesis and development of hormone dependent breast carcinoma. Among these enzymes, intratumoral aromatase plays as important role converting serum androgens to estrogens in situ, and servies as a source of estrogen, especially in postmenopausal patients with breast carcinoma. However, other enzymes such as the 17β-hiydroxysteroid dehydrogenase (17β-HSD) isozymes, estrogen sulfatase (STS) and estrogen sulfotransferase, also play pivotal roles in intratumoral estrogen production. The 17β-hiydroxysteroid dehydrogenase (17β-HSD) isozymes catalyze the interconversion of estradiol (E2) and estrone (El), and thereby serve to modulate the tissue levels of bioactive E2 in human breast carcinoma. 17β-HSD type 1 catalyzes primarily the reduction of estrone (El) to estradiol (E2), whereas 17β-HSD type 2 catalyzes primarily the oxidation of E2 to E1. In human breast desease, 17β-HSD type 1 is expressed in proliferative disease without atypia, atypical ductal hyperplasia, ductal carcinoma in situ and invasive ductal carcinoma. 17β-HSD type 2 has not been detected in any of these breast lesions. In addition, 17β-HSD type 1 coexpression is significantly correlated with estrogen receptor status in invasive ductal carcinoma cases. These results indicate that breast carcinoma can effectively convert E1, produced as a result of in situ aromatization, to E2, a biologically potent estrogen, which exerts estrogenic actions on tumor cells through estrogen receptor, especially the α subtype in carcinoma cells. Therefore, inhibiting intratumoral 17β-HSD type 1 is also considered to contribute to inhibition of cell proliferation by decreasing intratumoral estradiol. Estrogen sulfotransferase (EST; SULT 1E1 or STE gene) sulfonates estrogens to inactive estrogen sulfates, while steroid sulfatase (STS) hydrolyzes estrone sulfate (El-S) to estrone. EST immunoreactivity was recently demonstrated to be significantly associated with a decreased risk of recurrence or improved prognosis by both uni- and multivariate analyses. STS immunoreactivity was significantly associated with an increased risk of recurrence by univariate analysis. These findings also suggest that EST and STS plays important roles in regulation of in situ estrogen production, and EST especially is a potent prognostic factor in human breast carcinoma. Therefore, the inhibition of intratumoral STS might also serve as an endocrine therapy in postmenopausal patients. It is also important to note that the status of intratumoral aromatase, 17β-HSD type 1, EST and STS in human breast cancer tissues is variable and not necessarily correlated with each other, which suggests different potential sources of intratumoral estrogens among individual patients with breast cancer. These findings indicate that there are patients who could benefit more from inhibition of these intratumoral enzymes rather than aromatase inhibition as an endocrine therapy. Therefore, it will become very important to examine the intratumoral levels of 17β-HSD type 1 and STS in the resected specimens of human breast carcinoma as potential targets of novel endocrine therapy in the near future.

Key words

Estrogen Breast 7β-HSD Intracrinology EST STS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Henderson IC, Canellos GP: Cancer of the breast: The past decade.N Engl J Med 302:17–30, 1990.CrossRefGoogle Scholar
  2. 2).
    Sasano H, Okamoto M, Mason JI, Simpson ER, Mendelson CR, Sasano N, Silverberg SG: Immunolo-calization of aromatase, 17 alpha-hydroxylase and side-chain-cleavage cytochromes P-450 in the human ovary.Journal of Reproduction & Fertility 85:163–169, 1989.Google Scholar
  3. 3).
    Sasano H: Functional pathology of human ovarian steroidogenesis: Normal cycling ovary and steroid- producing neoplasms.Endocrine Pathology 5:81–89, 1994.CrossRefGoogle Scholar
  4. 4).
    Miller WR: Aromatase activity in breast tissue.J Steroid Biochem Mol Biol 39:783–790, 1991.PubMedCrossRefGoogle Scholar
  5. 5).
    Schweikert HU, Milewich L, Wilson JD: Aromatization of androstenedione by cultured human fibroblasts.J Clin Endocrinol Metab 43:785–795, 1976.PubMedGoogle Scholar
  6. 6).
    Longcope C, Pratt JH, Schneider SN, Fineberg SE: Aromatization of androgens by muscle and adipose tissue in vivo.J Clin Endocrinol Metab 46:146–152, 1978.PubMedCrossRefGoogle Scholar
  7. 7).
    Sasano H, Uzuki M, Sawai T, Nagura H, Matsunaga G, Kashimoto O, Harada N: Aromatase in human bone tissue.J Bone Miner Res 12:1416–1423, 1997.PubMedCrossRefGoogle Scholar
  8. 8).
    Dao TL, Hayes C, Libby PR: Steroid sulfatase activities in human breast tumors.Proc Soc Exp Biol Med 146:381–384, 1974.PubMedGoogle Scholar
  9. 9).
    Pasqualini JR, Gelly C, Lecerf F: Estrogen sulfates: biological and ultrastructuralresponses and metabolism in MCF-7 human breast cancer cells.Breast Cancer Res Treat 8:233–240, 1986.PubMedCrossRefGoogle Scholar
  10. 10).
    Aksoy IA, Wood TC, Weinshilboum R: Human liver estrogen sulfotransferase: identification by cDNA cloning and expression.Biochem Biophys Res Commun 200:1621–1629, 1994.PubMedCrossRefGoogle Scholar
  11. 11).
    Falany CN, Krasnykh V, Falany JL: Bacterial expression and characterization of a cDNA for human liver estrogen sulfotransferase.J Steroid Biochem Mol Biol 52:529–539, 1995.PubMedCrossRefGoogle Scholar
  12. 12).
    Dooley TP, Haldeman-Cahill R, Joiner J, Wilborn TW: Expression profiling of human sulfotransferase and sulfatase gene superfamilies in epithelial tissues and cultured cells.Biochem Biophys Res Commun 277:236–245, 2000.PubMedCrossRefGoogle Scholar
  13. 13).
    Peltoketo H, Isomaa V, Maentausta O, Vihko R: Complete amino acid sequence of human placental 17b-hydroxysteroid dehydrogenase deduced from cDNA.FEBS Lett 239:73–77, 1998.CrossRefGoogle Scholar
  14. 14).
    Poutanen M, Isomaa V, Lehto VP, Vihko R: Immunological analysis of 17b-hydroxysteroid dehydrogenase in benign and malignant human breast tissue.Int J Cancer 50:386–390, 1992.PubMedCrossRefGoogle Scholar
  15. 15).
    Poutanen M, Isomaa V, Peltoketo H, Vihko R: Role of 17b-hydroxysteroid dehydrogenase type 1 in endocrine and intracrine estradiol biosynthesis.J Steroid Biochem Mol Biol 55:525–532, 1995.PubMedCrossRefGoogle Scholar
  16. 16).
    Lipworth L, Adami HO, Trichopoulos D, Carlstrom K, Mantzoros C: Serum steroid hormone levels, sex hormone-binding globulin, and body mass index in the etiology of postmenopausal breast cancer.Epidemiology 7:96–100, 1996.PubMedCrossRefGoogle Scholar
  17. 17).
    Dorgan JF, Stanczyk FZ, Longcope C, Stephenson Jr HE, Chang L, Miller R, Franz C, Falk RT, Kahle L: Relationship of serum dehydroepiandrosterone (DHEA), DHEA sulfate, and 5-androstene-3 beta, 17 beta-diol to risk of breast cancer in postmenopausal women.Cancer Epidemiol Biomarkers Prev 6:177–181, 1997.PubMedGoogle Scholar
  18. 18).
    Berrino F, Muti P, Micheli A, Bolelli G, Krogh V, Sciajno R, Pisani P, Panico S, Secreto G: Serum sex hormone levels after menopause and subsequent breast cancer.J Natl Cancer Inst 88:291–296, 1996.PubMedCrossRefGoogle Scholar
  19. 19).
    James VHT, Reed MJ, Folkerd EJ: Studies of oestrogen metabolism in postmenopausal women with cancer.J Steroid Biochem 15:235–246, 1981.PubMedCrossRefGoogle Scholar
  20. 20).
    Helzlsouer KJ, Gordon GB, Alberg AJ, Bush TL, Comstock GW: Relationship of prediagnostic serum levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate to the risk of developing premenopausal breast cancer.Cancer Res 52:1–4, 1992.PubMedGoogle Scholar
  21. 21).
    Miller WR, Hawkins RA, Forrest APM: Significance of aromatase activity in human breast cancer.Cancer Res 42:3365–3368, 1982.Google Scholar
  22. 22).
    Perel E, Wilkins D, Killinger DW: The conversion of androstenedione to estrone, estradiol and testosterone in breast tissue.J Steroid Biochem 13:89–94, 1980.PubMedCrossRefGoogle Scholar
  23. 23).
    Yue W, Wang J-P, Hamilton CJ, Demers LM, Santen RJ: In situ aromatization enhances breast tumor estradiol levels and cellular proliferation.Cancer Res 58:927–932, 1998.PubMedGoogle Scholar
  24. 24).
    Labrie F, Belanger A, Simard J, Van Luu-The, Labrie C: DHEA and peripheral androgen and estrogen formation: intracrinology.Ann NY Acad Sci 774:16–28, 1995.PubMedCrossRefGoogle Scholar
  25. 25).
    Sasano H, Harada N: Intratumoral aromatase in human breast, endometrial, and ovarian malignancies.Endocrine Review 19:593–607, 1998.CrossRefGoogle Scholar
  26. 26).
    Brueggemeier RW, Hackett JC, Diaz-Cruz ES: Aromatase inhibitors in the treatment of breast cancer.Endocr Rev 26:331–345, 2005.PubMedCrossRefGoogle Scholar
  27. 27).
    Osborne C, Tripathy D: Aromatase inhibitors: rationale and use in breast cancer.Annu Rev Med 56:103–116, 2005.PubMedCrossRefGoogle Scholar
  28. 28).
    Luu-The V, Labrie C, Zhao HF,et al: Characterization of cDNAs for human estradiol 17b-HSD dehydrogenase and assignment of the gene to chromosome 17: evidence for two mRNA species with distinct 5′-termini in human placenta.Mol Endocrinol 3:1301–1309, 1989.PubMedCrossRefGoogle Scholar
  29. 29).
    Miettinen MM, Mustonen MVJ, Poutanen MH, Isomaa W, Vihko RK: Human 17b-hydroxysteroid dehydrogenase type 1 and type 2 isozymes have opposite activities in cultured cells and characteristic cell-and tissue-specific expression.Biochem J 314:839–845, 1996.PubMedGoogle Scholar
  30. 30).
    Takeyama J, Suzuki T, Hirasawa G, Muramatsu Y, Nagura H, Iinuma K, Nakamura J, Kimura KI, Yoshihama M, Harada N, Andersson S, Sasano H: 17beta-hydroxysteroid dehydrogenase type 1 and 2 expression in the human fetus.Journal of Clinical Endocrinology & Metabolism 85:410–416, 2000.CrossRefGoogle Scholar
  31. 31).
    Takeyama J, Sasano H, Suzuki T, Iinuma K, Nagura H, Andersson S: 17Beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta: an immuno- histochemical study with correlation to placental development.Journal of Clinical Endocrinology and Metabolism 83:3710–3715, 1998.PubMedCrossRefGoogle Scholar
  32. 32).
    Page DL, Dupont WD, Rogers LW, Rados MS: Atypical hyperplastic lesions of the female breast; a long-term follow-up study.Cancer 55:2698–2708, 1985.PubMedCrossRefGoogle Scholar
  33. 33).
    London SJ, Connolly JL, Schnitt SJ, Colditz GA: A prospective study of benign breast disease and the risk of breast cancer.JAMA 267:941–944, 1992.PubMedCrossRefGoogle Scholar
  34. 34).
    Shekhar PVM, Werdell J, Barsrur VS: Environmental estrogen stimulation of growth and estrogen receptor function in preneoplastic and cancerous human breast cell lines.J Natl Cancer Inst 89:1774–1782, 1997.PubMedGoogle Scholar
  35. 35).
    Ariga N, Moriya T, Suzuki T, Kimura M, Ohuchi N, Satomi S, Sasano H: 17 beta-Hydroxysteroid dehydrogenase type 1 and type 2 in ductal carcinoma in situ and intraductal proliferative lesions of the human breast.Anticancer Research 20:1101–1108, 2000.PubMedGoogle Scholar
  36. 36).
    Suzuki T, Moriya T, Ariga N, Kaneko C, Kanazawa M, Sasano H: 17Beta-hydroxysteroid dehydrogenase type 1 and type 2 in human breast carcinoma: a correlation to clinicopathological parameters.British Journal of Cancer 82:518–523, 2000.PubMedCrossRefGoogle Scholar
  37. 37).
    Oduwole OO, Li Y, Isomaa W, Mantyniemi A, Pulk-ka AE, Soini Y, Vihko PT: 17beta-hydroxysteroid dehydrogenase type 1 is an independent prognostic marker in breast cancer.Cancer Res 64:7604–7609, 2004.PubMedCrossRefGoogle Scholar
  38. 38).
    Tremblay MR, Boivin RP, Luu-The V, Poirier D: Inhibitors of type 1 17beta-hydroxysteroid dehydrogenase with reduced estrogenic activity: modifications of the positions 3 and 6 of estradiol.J Enzyme Inhib Med Chem 20:153–163, 2005.PubMedCrossRefGoogle Scholar
  39. 39).
    Fischer DS, Allan GM, Bubert C, Vicker N, Smith A, Tutill HJ, Purohit A, Wood L, Packham G, Mahon MF, Reed MJ, Potter BV: E-ring modified steroids as novel potent inhibitors of 17beta-hydroxysteroid dehydrogenase type 1.J Med Chem 48:5749–5770, 2005.PubMedCrossRefGoogle Scholar
  40. 40).
    Falany JL, Falany CN: Expression of cytosolic sulfo- transferases in normal mammary epithelial cells and breast cancer cell lines.Cancer Res 56:1551–1555, 1996.PubMedGoogle Scholar
  41. 41).
    Chetrite G, Le Nestour E, Pasqualini JR: Human estrogen sulfotransferase (hEST1) activities and its mRNA in various breast cancer cell lines. Effect of the progestin, promegestone (R-5020).J Steroid Biochem Mol Biol 66:295–302, 1998.PubMedCrossRefGoogle Scholar
  42. 42).
    Adams JB, Pewnim T, Chandra DP, Archibald L, Foo MS: A correlation between estrogen sulfotransferase levels and estrogen receptor status in human primary breast carcinoma.Cancer Res 39:5124–5126, 1979.PubMedGoogle Scholar
  43. 43).
    Tseng L, Mazella J, Lee LY, Stone ML: Estrogen sulfatase and estrogen sulfotransferase in human primary mammary carcinoma.J Steroid Biochem 4:1413–1417, 1983.CrossRefGoogle Scholar
  44. 44).
    Utsumi T, Yoshimura N, Takeuchi S, Ando J, Maruta M, Maeda K, Harada N: Steroid sulfatase expression is an independent predictor of recurrence in human breast cancer.Cancer Res 59:377–381, 1999.PubMedGoogle Scholar
  45. 45).
    Saeki T, Takashima S, Sasaki H, Hanai N, Salomon DS: Localization of Estrone Sulfatase in Human Breast Carcinomas.Breast Cancer 6:331–337, 1999.PubMedCrossRefGoogle Scholar
  46. 46).
    Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T, Akinaga S, Hirakawa H, Kimura M, Sasano H: Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma.Cancer Research 63:2762–2770, 2003.PubMedGoogle Scholar
  47. 47).
    Pasqualini JR, Chetrite G, Blacker C, Feinstein MC, Delalonde L, Talbi M, Maloche C: Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre-and postmenopausal breast cancer patients.J Clin Endocrinol Metab 81:1460–1464, 1996.PubMedCrossRefGoogle Scholar
  48. 48).
    Santner SJ, Feil PD, Santen RJ: In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway.J Clin Endocrinol Metab 59:29–33, 1984.PubMedGoogle Scholar
  49. 49).
    Santner SJ, Ohlsson-Wilhelm B, Santen RJ: Estrone sulfate promotes human breast cancer cell replication and nuclear uptake of estradiol in MCF-7 cell cultures.Int J Cancer 54:119–124, 1993.PubMedCrossRefGoogle Scholar
  50. 50).
    Evans TR, Rowlands MG, Law M, Coombes RC: Intratumoral oestrone sulphatase activity as a prognostic marker in human breast carcinoma.Br J Cancer 69:555–561, 1994.PubMedGoogle Scholar
  51. 51).
    Selcer KW, Hegde PV, Li PK: Inhibition of estrone sulfatase and proliferation of human breast cancer cells by nonsteroidal (p-O-sulfamoyl)-N-alkanoyl tyra-mines.Cancer Res 57:702–707, 1997.PubMedGoogle Scholar
  52. 52).
    Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV: Steroid sulfatase: molecular biology, regulation, and inhibition.Endocr Rev 26:171–202, 2005.PubMedCrossRefGoogle Scholar
  53. 53).
    Leese MP, Hejaz HA, Mahon MF, Newman SP, Purohit A, Reed MJ, Potter BV: A-ring-substituted estrogen-3-O-sulfamates: potent multitargeted anticancer agents.J Med Chem 48:5243–5256, 2005.PubMedCrossRefGoogle Scholar
  54. 54).
    Nakata T, Takashima S, Shiotsu Y, Murakata C, Ishida H, Akinaga S, Li PK, Sasano H, Suzuki T, Saeki T: Role of steroid sulfatase in local formation of estrogen in post-menopausal breast cancer patients.J Steroid Biochem Mol Biol 86:455–460, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2006

Authors and Affiliations

  • Hironobu Sasano
    • 1
    Email author
  • Takashi Suzuki
    • 1
  • Taisuke Nakata
    • 1
  • Takuya Moriya
    • 1
  1. 1.Department of PathologyTohoku University School of MedicineSendaiJapan

Personalised recommendations