Breast Cancer

, Volume 12, Issue 4, pp 279–287 | Cite as

Mild cognitive impairment after adjuvant chemotherapy in breast cancer patients - evaluation of appropriate research design and methodology to measure symptoms

  • Tomohiro Matsuda
  • Tomoko Takayama
  • Manabu Tashiro
  • Yu Nakamura
  • Yasuo Ohashi
  • Kojiro Shimozuma
Review article


The development of new chemotherapeutic agents and regimens has contributed to reduced risk of cancer recurrence and prolonged patient survival. However, mild cognitive impairment (MCI), also known as “chemofog” or “chemobrain” following adjuvant chemotherapy for breast cancer has been reported since the late 1980s. Unfortunately, little is known about it's mechanism, type, severity, and episode length. This article reviewed related studies on the subject, and found that chemotherapy-induced MCI appears to occur in 10-40% of patients, and memory loss and lack of concentration are the most frequent symptoms. The symptoms are apparently transient, but take at least several years to disap-pear. Reviewed studies show a lack of clear understanding of what causes MCI directly. There is also a lack of consistency in symptom measurement. We point to the need to conduct well-designed studies which begin with a proper hypothesis. Future research needs to be randomized and longitudinal with a base measurement point before the chemotherapy cycle starts. Future studies must adopt an effective and sensitive method to measure MCI. The latest imaging technique, positron emission tomography (PET) may be a powerful tool. Also, all confounding factors, such as age, education, intelligence quotient (IQ), fatigue and depression, hormonal therapy and other treatments should be controlled within the study design. It is hoped that the results of such future studies will allow medical professionals to contemplate effective prevention, treatment and rehabilitation for MCI.


Cognitive impairment Chemotherapy Breast cancer QOL PET 



Mild cognitive impairment


Quality of life


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF: Cognitive function in breast cancer patients receiving adjuvant chemotherapy.J Clin Oncol 18:2695–2701, 2000.PubMedGoogle Scholar
  2. 2).
    Davis BD, Fernandez F, Adams F, Holmes V, Levy JK, Lewis D, Neidhart J: Diagnosis of dementia in cancer patients. Cognitive impairment in these patients can go unrecognized.Psychosomatics 28:175- 179, 1987.PubMedGoogle Scholar
  3. 3).
    Bender CM, Paraska KK, Sereika SM, Ryan CM, Berga SL: Cognitive function and reproductive hormones in adjuvant therapy for breast cancer: a critical review.J Pain Symptom Manage 21:407–424, 2001.PubMedCrossRefGoogle Scholar
  4. 4).
    Goodwin JS, Samet JM, Hunt WC: Determinants of survival in older cancer patients.J Natl Cancer Inst 88:1031–1038, 1996.PubMedCrossRefGoogle Scholar
  5. 5).
    Mandelblatt J, Figueiredo M, Cullen J: Outcomes and quality of life following breast cancer treatment in older women: When, why, how much, and what do women want?Health Qual Life Outcomes 1:45, 2003.PubMedCrossRefGoogle Scholar
  6. 6).
    Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, Bruning PF: Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma.Cancer 85:640–650, 1999.PubMedCrossRefGoogle Scholar
  7. 7).
    Meyers CA, Abbruzzese JL: Cognitive functioning in cancer patients: effect of previous treatment.Neurology 42:434–436, 1992.PubMedGoogle Scholar
  8. 8).
    van Dam FS, Schagen SB, Muller MJ, Boogerd W, vd Wall E, Droogleever Fortuyn ME, Rodenhuis S: Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: highdose versus standard-dose chemotherapy.J Natl Cancer Inst 90:210–218, 1998.PubMedCrossRefGoogle Scholar
  9. 9).
    Schagen SB, Muller MJ, Boogerd W, Rosenbrand RM, van Rhijn D, Rodenhuis S, van Dam FS: Late effects of adjuvant chemotherapy on cognitive function: a follow-up study in breast cancer patients.Ann Oncol 13:1387–1397, 2002.PubMedCrossRefGoogle Scholar
  10. 10).
    Berglund G, Bolund C, Fornander T, Rutqvist LE, Sjoden PO: Late effects of adjuvant chemotherapy and postoperative radiotherapy on quality of life among breast cancer patients.Eur J Cancer 27:1075–1081, 1991.PubMedGoogle Scholar
  11. 11).
    Ahles TA, Saykin AJ, Furstenberg CT, Cole B, Mott LA, Skalla K, Whedon MB, Bivens S, Mitchell T, Greenberg ER, Silberfarb PM: Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma.J Clin Oncol 20:485–493, 2002.PubMedCrossRefGoogle Scholar
  12. 12).
    Olin JJ: Cognitive function after systemic therapy for breast cancer.Oncology (Huntingt) 15:613–618; discussion 618, 621-624, 2001.PubMedGoogle Scholar
  13. 13).
    Harder H, Cornelissen JJ, Van Gool AR, Duivenvoorden HJ, Eijkenboom WM, van den Bent MJ: Cognitive functioning and quality of life in long-term adult survivors of bone marrow transplantation.Cancer 95:183–192, 2002.PubMedCrossRefGoogle Scholar
  14. 14).
    Logsdon RG, Gibbons LE, McCurry SM, Teri L: Assessing quality of life in older adults with cognitive impairment.Psychosom Med 64:510–519, 2002.PubMedGoogle Scholar
  15. 15).
    Terada S, Ishizu H, Fujisawa Y, Fujita D, Yokota O, Nakashima H, Haraguchi T, Ishihara T, Yamamoto S, Sasaki K, Nakashima Y, Kuroda S: Development and evaluation of a health-related quality of life questionnaire for the elderly with dementia in Japan.Int J Geriatr Psychiatry 17:851–858, 2002.PubMedCrossRefGoogle Scholar
  16. 16).
    Tchen N, Juffs HG, Downie FP, Yi QL, Hu H, Chemerynsky I, Clemons M, Crump M, Goss PE, Warr D, Tweedale ME, Tannock IF: Cognitive function, fatigue, and menopausal symptoms in women receiving adjuvant chemotherapy for breast cancer.J Clin Oncol 21:4175–4183, 2003.PubMedCrossRefGoogle Scholar
  17. 17).
    Dew MA, Kormos RL, Winowich S, Harris RC, Stanford EA, Carozza L, Griffith BP: Quality of life outcomes after heart transplantation in individuals bridged to transplant with ventricular assist devices.J Heart Lung Transplant 20:1199–1212, 2001.PubMedCrossRefGoogle Scholar
  18. 18).
    Tuxen MK, Hansen SW: Neurotoxicity secondary to antineoplastic drugs.Cancer Treat Rev 20:191–214, 1994.PubMedCrossRefGoogle Scholar
  19. 19).
    Svane IM, Homburg KM, Kamby C, Nielsen DL, Roer O, Sliffsgaard D, Johnsen HE, Hansen SW: Acute and late toxicity following adjuvant high-dose chemotherapy for high-risk primary operable breast cancer-a quality assessment study.Acta Oncol 41:675- 683, 2002.PubMedCrossRefGoogle Scholar
  20. 20).
    van Gerven JM, Moll JW, van den Bent MJ, Bontenbal M, van der Burg ME, Verweij J, Vecht CJ: Paclitaxel (Taxol) induces cumulative mild neurotoxicity.Eur J Cancer 30A:1074–1077, 1994.PubMedCrossRefGoogle Scholar
  21. 21).
    Postma TJ, Vermorken JB, Liefting AJ, Pinedo HM, Heimans JJ: Paclitaxel-induced neuropathy.Ann Oncol 6:489–494, 1995.PubMedGoogle Scholar
  22. 22).
    Phillips KA, Bernhard J: Adjuvant breast cancer treatment and cognitive function: current knowledge and research directions.J Natl Cancer Inst 95:190–197, 2003.PubMedCrossRefGoogle Scholar
  23. 23).
    Bender CM, Yasko JM, Kirkwood JM, Ryan C, Dunbar-Jacob J, Zullo T: Cognitive function and quality of life in interferon therapy for melanoma.Clin Nurs Res 9:352–363, 2000.PubMedCrossRefGoogle Scholar
  24. 24).
    Yaffe K, Sawaya G, Lieberburg I, Grady D: Estrogen therapy in postmenopausal women: effects on cognitive function and dementia.JAMA 279:688–695, 1998.PubMedCrossRefGoogle Scholar
  25. 25).
    Haskell SG, Richardson ED, Horwitz RI: The effect of estrogen replacement therapy on cognitive function in women: a critical review of the literature.J Clin Epidemiol 50:1249–1264, 1997.PubMedCrossRefGoogle Scholar
  26. 26).
    Jenkins V, Shilling V, Fallowfield L, Howell A, Hutton S: Does hormone therapy for the treatment of breast cancer have a detrimental effect on memory and cognition? A pilot study.Psychooncology 13:61–66, 2004.PubMedCrossRefGoogle Scholar
  27. 27).
    Meyers CA, Byrne KS, Komaki R: Cognitive deficits in patients with small cell lung cancer before and after chemotherapy.Lung Cancer 12:231–235, 1995.PubMedCrossRefGoogle Scholar
  28. 28).
    Green HJ, Pakenham KI, Headley BC, Yaxley J, Nicol DL, Mactaggart PN, Swanson C, Watson RB, Gardiner RA: Altered cognitive function in men treated for prostate cancer with luteinizing hormone-releasing hormone analogues and cyproterone acetate: a randomized controlled trial.BJU Int 90:427–432, 2002.PubMedCrossRefGoogle Scholar
  29. 29).
    Burmeister LA, Ganguli M, Dodge HH, Toczek T, DeKosky ST, Nebes RD: Hypothyroidism and cognition: preliminary evidence for a specific defect in memory.Thyroid 11:1177–1185, 2001.PubMedCrossRefGoogle Scholar
  30. 30).
    Peace KA, Orme SM, Thompson AR, Padayatty S, Ellis AW, Belchetz PE: Cognitive dysfunction in patients treated for pituitary tumours.J Clin Exp Neuropsychol 19:1–6, 1997.PubMedCrossRefGoogle Scholar
  31. 31).
    McLachlan SA, Devins GM, Goodwin PJ: Validation of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (QLQ- C30) as a measure of psychosocial function in breast cancer patients.Eur J Cancer 34:510–517, 1998.PubMedCrossRefGoogle Scholar
  32. 32).
    Cimprich B, Ronis DL: Attention and symptom distress in women with and without breast cancer.Nurs Res 50:86–94, 2001.PubMedCrossRefGoogle Scholar
  33. 33).
    Ernst T, Chang L, Cooray D, Salvador C, Jovicich J, Walot I, Boone K, Chlebowski R: The effects of tamoxifen and estrogen on brain metabolism in elderly women.J Natl Cancer Inst 94:592–597, 2002.PubMedGoogle Scholar
  34. 34).
    Eberling JL, Wu C, Tong-Turnbeaugh R, Jagust WJ: Estrogen- and tamoxifen-associated effects on brain structure and function.Neuroimage 21:364–371, 2004.PubMedCrossRefGoogle Scholar
  35. 35).
    Paganini-Hill A, Clark LJ: Preliminary assessment of cognitive function in breast cancer patients treated with tamoxifen.Breast Cancer Res Treat 64:165–176, 2000.PubMedCrossRefGoogle Scholar
  36. 36).
    Ahles TA, Saykin AJ: Breast cancer chemotherapyrelated cognitive dysfunction.Clin Breast Cancer 3 Suppl 3:S84-90, 2002.Google Scholar
  37. 37).
    Bruera E, Fainsinger RL, Miller MJ, Kuehn N: The assessment of pain intensity in patients with cognitive failure: a preliminary report.J Pain Symptom Manage 7:267–270, 1992.PubMedCrossRefGoogle Scholar
  38. 38).
    Wechsler D: WMS-R: Wechsler memory scale-revised manual., New York: The Psychological Corporation, 1987.Google Scholar
  39. 39).
    Wechsler D: Manual for the Wechsler Adult Intelligence Scale-Revised., New York: The Psychological Corporation, 1981.Google Scholar
  40. 40).
    Folstein MF, Folstein SE, McHugh PR: “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.J Psychiatr Res 12:189–198, 1975.PubMedCrossRefGoogle Scholar
  41. 41).
    Pereira J, Hanson J, Bruera E: The frequency and clinical course of cognitive impairment in patients with terminal cancer.Cancer 79:835–842, 1997.PubMedCrossRefGoogle Scholar
  42. 42).
    Tang-Wai DF, Knopman DS, Geda YE, Edland SD, Smith GE, Ivnik RJ, Tangalos EG, Boeve BF, Petersen RC: Comparison of the short test of mental status and the mini-mental state examination in mild cognitive impairment.Arch Neurol 60:1777–1781, 2003.PubMedCrossRefGoogle Scholar
  43. 43).
    Machulda MM, Ward HA, Borowski B, Gunter JL, Cha RH, O'Brien PC, Petersen RC, Boeve BF, Knopman D, Tang-Wai DF, Ivnik RJ, Smith GE, Tangalos EG, Jack CR, Jr.: Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients.Neurology 61:500–506, 2003.PubMedGoogle Scholar
  44. 44).
    Iuvone L, Mariotti P, Colosimo C, Guzzetta F, Ruggiero A, Riccardi R: Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia.Cancer 95:2562–2670, 2002.PubMedCrossRefGoogle Scholar
  45. 45).
    Fliessbach K, Urbach H, Helmstaedter C, Pels H, Glasmacher A, Kraus JA, Klockgether T, Schmidt-Wolf I, Schlegel U: Cognitive performance and magnetic resonance imaging findings after high-dose systemic and intraventricular chemotherapy for primary central nervous system lymphoma.Arch Neurol 60:563–568, 2003.PubMedCrossRefGoogle Scholar
  46. 46).
    Jack CR, Jr., Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E: Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment.Neurology 52:1397–1403, 1999.PubMedGoogle Scholar
  47. 47).
    Tashiro M, Juengling FD, Reinhardt MJ, Mix M, Kumano H, Kubota K, Itoh M, Sasaki H, Nitzsche EU, Moser E: Depressive state and regional cerebral activity in cancer patients - a preliminary study.Med Sci Monit 7:687–695, 2001.PubMedGoogle Scholar
  48. 48).
    Erritzoe D, Talbot P, Frankle WG, Abi-Dargham A: Positron emission tomography and single photon emission CT molecular imaging in schizophrenia.Neuroimaging Clin N Am 13:817–832, 2003.PubMedCrossRefGoogle Scholar
  49. 49).
    Singer HS, Szymanski S, Giuliano J, Yokoi F, Dogan AS, Brasic JR, Zhou Y, Grace AA, Wong DF: Elevated intrasynaptic dopamine release in Tourette’s syndrome measured by PET.Am J Psychiatry 159:1329- 1336, 2002.PubMedCrossRefGoogle Scholar
  50. 50).
    Klepstad P, Hilton P, Moen J, Fougner B, Borchgrevink PC, Kaasa S: Self-reports are not related to objective assessments of cognitive function and sedation in patients with cancer pain admitted to a palliative care unit.Palliat Med 16:513–519, 2002.PubMedCrossRefGoogle Scholar
  51. 51).
    Ahles TA, Saykin A: Cognitive effects of standarddose chemotherapy in patients with cancer.Cancer Invest 19:812–820, 2001.PubMedCrossRefGoogle Scholar
  52. 52).
    Ganz PA: Cognitive dysfunction following adjuvant treatment of breast cancer: a new dose-limiting toxic effect?J Natl Cancer Inst 90:182–183, 1998.PubMedCrossRefGoogle Scholar
  53. 53).
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Kokmen E, Tangelos EG: Aging, memory, and mild cognitive impairment.Int Psychogeriatr 9 Suppl 1:65–69, 1997.CrossRefGoogle Scholar
  54. 54).
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E: Mild cognitive impairment: clinical characterization and outcome.Arch Neurol 56:303- 308, 1999.PubMedCrossRefGoogle Scholar
  55. 55).
    Fisk JD, Merry HR, Rockwood K: Variations in case definition affect prevalence but not outcomes of mild cognitive impairment.Neurology 61:1179–1184, 2003.PubMedGoogle Scholar
  56. 56).
    Knopman DS, Boeve BF, Petersen RC: Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia.Mayo Clin Proc 78:1290–1308, 2003.PubMedCrossRefGoogle Scholar
  57. 57).
    Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT: A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group.Neurology 50:136–145, 1998.PubMedGoogle Scholar
  58. 58).
    Barton D, Loprinzi C: Novel approaches to preventing chemotherapy-induced cognitive dysfunction in breast cancer: the art of the possible.Clin Breast Cancer 3 Suppl 3:S121-127, 2002.Google Scholar

Copyright information

© The Japanese Breast Cancer Society 2005

Authors and Affiliations

  • Tomohiro Matsuda
    • 1
  • Tomoko Takayama
    • 2
  • Manabu Tashiro
    • 3
  • Yu Nakamura
    • 4
  • Yasuo Ohashi
    • 5
  • Kojiro Shimozuma
    • 6
  1. 1.Department of EpidemiologyNational Institute of Public HealthWako-shi, SaitamaJapan
  2. 2.Faculty of Health SciencesOkayama University Medical SchoolJapan
  3. 3.Cyclotron and Radioisotope CenterTohoku UniversityJapan
  4. 4.Department of Psychiatry, Faculty of MedicineKagawa UniversityJapan
  5. 5.Department of Biostatistics, School of Health Sciences and NursingUniversity of TokyoJapan
  6. 6.Department of Healthcare and Social Services, Faculty of Service IndustriesUniversity of Marketing and Distribution SciencesJapan

Personalised recommendations