Skip to main content
Log in

Chemotaxonomy of some Paleozoic vascular plants. Part III. Cluster configurations and their bearing on taxonomic relationships

  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

Chemical data are given forSciadophyton, Eogaspesiea,Lepidodendropsis, Triphyllopteris, Chlidanophyton andDrepanophycus. The participation of these taxa within clustering analysis is shown to generate a cluster referable tentatively to the lycopods. Introgression of clusters representative of some major plant groups (e.g., zosterophyllophytes with the lycopods, and the trimerophytes with the progymnosperms) may reflect fortuitous statistical relationships referable to different states of preservation orbona fide phylogenetic trends. Weighting of the data is shown to result in the greater resolution of clusters, while sample size (presently 34 taxa) demonstrates a considerable effect on statistical relationships. Thermolytic alterations of extant plant materials, when incorporated within fossil plant ordination diagrams, are shown to provide internal monitors allowing for a more precise evaluation of taxonomic-chemical relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ball, G. H. 1971. Classification analysis. Stamford Research Institute, SRI Project 5533: 1–53.

    Google Scholar 

  • Banks, H. P. 1968. The stratigraphic occurrence of early land plants and its bearing on their origin, pp. 721–730.In: D. H. Oswald (Editor), International Symposium on the Devonian System, Vol. I. Alberta Soc. Petroleum Geologists, Calgary, Canada.

    Google Scholar 

  • Birks, H. J. B., T. Webb III, & A. A. Berti. 1975. Numerical analysis of pollen samples from central Canada: A comparison of methods. Rev. Palaeobot. Palynol. 20: 133–170.

    Article  Google Scholar 

  • Brown, A. C., B. A. Knights, & E. Conway. 1969. Hydrocarbon content and its relationship to physiological state in the green algaBotryococcus braunii. Phytochemistry 8: 543–547.

    Article  CAS  Google Scholar 

  • Cattell, R. B. & M. A. Coulter. 1966. Principles of behavioural taxonomy and the mathematical basis of the taxonome computer program. Br. J. Math. Statist. Psychol. 19: 237–269.

    CAS  Google Scholar 

  • Chittenden, G. J. F. & A. W. Schwartz. 1976. Possible pathway for prebiotic uracil synthesis by photodehydration. Nature 263: 350–351.

    Article  PubMed  CAS  Google Scholar 

  • Daber, R. 1960.Eogaspesiea gracilis n. g. n. sp. Geologie 4: 418–425.

    Google Scholar 

  • Dembicki, H., W. G. Meinschein, & D. E. Hattin. 1976. Possible ecological and environmental significance of the predominance of even-carbon number C20-C30 n-alkanes. Geochim. Cosmochim. Acta 40: 203–208.

    Article  CAS  Google Scholar 

  • Dolph, G. E. 1975. A statistical analysis ofApocynophyllum mississippiensis. Palaeontographica, Abt. B. 151: 1–51.

    Google Scholar 

  • Dungworth, G. 1976. Optical configuration and the racemisation of amino acids in sediments and in fossils—a review. Chemical Geology 17: 135–153.

    Article  CAS  Google Scholar 

  • Gray, J. & A. J. Boucot. 1977. Early vascular land plants: Proof and Conjecture. Lethaia 10: 145–174.

    Article  Google Scholar 

  • Gensel, P. G. 1973. A new plant from the lower Mississippian of South West Virginia. Palaeotographica, Abt. B. 142: 137–153.

    Google Scholar 

  • Good, B. H. & R. L. Chapman. 1978. The ultrastructure ofPhycopeltis (Chroolepidaceae ; Chlorophyta). I. Sporopollenin in the cell walls. Amer. J. Bot. 65: 27–33.

    Article  CAS  Google Scholar 

  • Gordon, A. D. & I. C. Prentice. 1977. Numerical methods in Quaternary paleoecology. IV. Separating mixtures of morphologically similar pollen taxa. Rev. Palaeobot. Palynol. 23: 359–372.

    Article  Google Scholar 

  • Hohn, M. E. & W. G. Meinschein. 1977. Fatty acids in fossil fruits. Geochim. Cosmochim. Acta 41: 189–193.

    Article  CAS  Google Scholar 

  • Ikan, R., M. J. Baedecker, & I. R. Kaplan. 1975. Thermal alteration experiments on organic matter in recent marine sediments—III. Aliphatic and steroidal alcohols. Geochim. Cosmochim. Acta 39: 195–203.

    Article  CAS  Google Scholar 

  • KrÄusel, R. & H. Weyland. 1930. Die Flora des deutschen Unterdevons. Abh. preuss. geol. Landesanst., N. F. 131: 1–92.

    Google Scholar 

  • Matsuda, H. & T. Koyama. 1977. Early diagenesis of fatty acids in lacustrine sediments—1. Identification and distribution of fatty acids in recent sediments from a freshwater lake. Geochim. Cosmochim. Acta 41: 777–783.

    Article  CAS  Google Scholar 

  • Morrison, D. G. 1967. Measurement problems in cluster analysis. Management Science 13: 775–780.

    Article  Google Scholar 

  • Niklas, K. J. 1976a. Chemical examinations of some non-vascular Paleozoic plants. Brittonia 28: 113–137.

    Article  Google Scholar 

  • — 1976b. Organic chemistry ofProtosalvinia (=Forestia) from the Chattanooga and New Albany Shales. Rev. Palaeobot. Palynol. 22: 265–279.

    Article  Google Scholar 

  • — & W. G. Chaloner. 1976a. Chemotaxonomy of some problematic Paleozoic plant fossils. Rev. Palaeobot. Palynol. 22: 81–104.

    Article  Google Scholar 

  • —. 1976b. Simulations of the ontogeny ofSpongiophyton, a Devonian plant. Ann. Bot. 40: 1–11.

    Google Scholar 

  • — & P. G. Gensel. 1976. Chemotaxonomy of some Paleozoic vascular plants. Part I: Chemical compositions and preliminary cluster analyses. Brittonia 28: 353–378.

    Article  Google Scholar 

  • —. 1977. Chemotaxonomy of some Paleozoic vascular plants. Part II: Chemical characterization of major plant groups. Brittonia 29: 100–111.

    Article  CAS  Google Scholar 

  • — & D. E. Giannasi. 1977. Geochemistry and thermolysis of flavonoids. Science 197: 767–769.

    Article  PubMed  CAS  Google Scholar 

  • Read, C. B. 1955. Floras of the Pocono Formation and Price Sandstone in parts of Pennsylvania, Maryland, West Virginia and Virginia. Geol. Survey, Prof. Paper No. 263: 1–32.

    Google Scholar 

  • Schwartz, A. W., M. Van der Veen, M. Bisseling, & G. J. F. Chittenden. 1975. Prebiotic nucleotide synthesis—demonstration of a geochemically plausible pathway. Origins of Life 6: 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Sneath, P. H. & R. R. Sokal. 1973.Numerical Taxonomy. Freeman, San Francisco.

    Google Scholar 

  • Teil, H. & J. L. Cheminee. 1975. Application of correspondence factor analysis to the study of major and trace elements in the Erta Ale Chain (Afar, Ethiopia). Math. Geol. 7: 13.

    Article  Google Scholar 

  • Wallace, C. S. & D. M. Boulton. 1968. An information measure for classification. Computer J. 11: 185–198.

    Google Scholar 

  • Wehmiller, J. F., P. E. Hare, & G. A. Kujala. 1976. Amino acids in fossil corals: racemization (epimerization) reactions and their implementations for diagenetic models and geochronological studies. Geochim. Cosmochim. Acta 40: 763–776.

    Article  CAS  Google Scholar 

  • Williams, W. T. & M. B. Dale. 1965. Fundamental problems in Numerical taxonomy. pp. 134–162.In: R. D. Preston (Editor), Advances in Botanical Research, Vol. 2. Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niklas, K.J., Gensel, P.G. Chemotaxonomy of some Paleozoic vascular plants. Part III. Cluster configurations and their bearing on taxonomic relationships. Brittonia 30, 216–232 (1978). https://doi.org/10.2307/2806656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.2307/2806656

Keywords

Navigation