, Volume 28, Issue 1, pp 113–137 | Cite as

Chemical examinations of some non-vascular Paleozoic plants

  • Karl J. Niklas


The organic chemical constituents of compression fossils ofNematothallus,Spongiophyton, Orestovia andEohostimella are identified and compared with those isolated from living and fossil forms ofBotryococcus (a green alga) andTaeniocrada (a vascular plant fossil). The range and maxima in the carbon numbers observed in the normal, saturated acids isolated fromNematothallus, Orestovia, andSpongiophyton are similar to those of fossilBotryococcus, while those acids contained within compression fossils ofEohostimella are similar to the hydrocarbon composition ofTaeniocrada. Isoprenoid, branched hydrocarbons and steroids identified fromNematothallus, Orestovia, andSpongiophyton suggest these genera have algal affinities, while the presence of thick cuticles and in some cases cutin-like compounds appear to show adaptation to a terrestrial environment. Phenolic compounds retained within rock matrices associated withEohostimella are similar to those isolated fromTaeniocrada suggesting chemical, as well as morphological parallels with the land plant habit. These data are interpreted as indicating an early polyphyletic exploitation of the terrestrial habitat during the Paleozoic.


Phytanic Acid Fossil Material Taxonomic Affinity Aromatic Dicarboxylic Acid Carbon Number Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ananiev, A. R. &M. A. Senkevitch 1962. Psilopsida; Systematic part. pp. 325–343.In: V. A. Vachrameev, G. P. Radchenko, and A. I. Takhtajan (Eds.), Osnovii Palaeontologii, Moscow. [In Russian.]Google Scholar
  2. Arnold, C. A. 1952. A specimen ofPrototaxites from the Kettle Point Black Shale of Ontario. Palaeontographica, Abt. B,93: 45–56.Google Scholar
  3. Banks, H. P. 1960. The early History of Land Plants (Chapter 2). pp. 73–107. In: H. D. Drake (Editor), Peabody Museum Nat. Hist. Cenn. (1966), Vol. 475.Google Scholar
  4. Banks, H. P. 1968. The stratigraphic occurrence of early land plants and its bearing on their Origin. pp. 721–730.In: D. H. Oswald (Editor),Inter. Sym. on the Devonian System, Vol. 1. Alberta Soc., Petroleum Geologists: Calgary, Canada.Google Scholar
  5. Bendoraitis, J. G., B. L. Brown &L. S. Hepner 1962. Isoprenoid hydrocarbons in petroleum. Isolation of 2, 6, 10, 14-tetramethylpentadecane by high temperature gas liquid chromatography. Anal. Chem.34: 49.CrossRefGoogle Scholar
  6. Bertrand, P. 1927. Les Botryococcacées actuelles et fossiles et les conséquences de leur activite biologique. Crit. Rev. Soc. Biol. Paris,96: 695–697.Google Scholar
  7. Blackburn, K. B. &B. N. Temperley 1935. A reinvestigation of the algaBotryococcus Brownii Kütz., II. The boghead controversy and the morphology of the boghead algae. Royal Soc. Edinburgh, Trans.,58: 841–854.Google Scholar
  8. Bourrelly, P. 1966.Les Algues D’eau Douce. Tome I:Les Algues Vertes. Paris: Boubie & Cie.Google Scholar
  9. Burlingame, A. L., P. A. Haus, H. K. Schnoes &B. R. Simoneit 1968. Fatty acids derived from the Green River Formation Oil Shale by extractions and oxidations—A review. pp. 85–129.In: P. A. Schenk and I. Havenaar (Eds.), Advances in Organic Geochemistry, Oxford: Pergamon Press, Inc.Google Scholar
  10. Burlingame, A. L., P. A. Haus, H. K. Schnoes &B. R. Simoneit &B. R. Simoneit 1968. Isoprenoid fatty acids isolated from the kerogen matrix of the Green River Formation. Nature,218: 252.CrossRefGoogle Scholar
  11. Chaloner, W. G. &K. Allen 1969. Palaeobotany and Phytochemical Phylogeny. pp. 21–30.In: J. B. Harborne (Editor), Phytochemical Phylogeny, London: Academic Press.Google Scholar
  12. Chaloner, W. G. &K. Allen, M. K. Mensah &M. D. Crane 1974. Non-vascular land plants from the Devonian of Ghana. Palaeontology17(4): 925–947.Google Scholar
  13. Croxton, F. E. 1959. Elementary Statistics. New York: Dover Publications, Inc. (Reprinted from the 1953 Prentice-Hall, Inc., publication.)Google Scholar
  14. Cummins, J. J. &W. E. Robinson 1964. Normal and isoprenoid hydrocarbons isolated from Oil Shale Bitumen. J. Chem. Eng. Data,9: 304.CrossRefGoogle Scholar
  15. Don, A. W. R. &G. Hickling 1917. OnParka decipiens. Quart. Jl. Geol. Soc. Lond.,71: 648–666.Google Scholar
  16. Douglas, A. G., K. Douraghi-Zadeh, G. Eglinton, J. R. Maxwell &J. N. Ramsay 1966. Fatty acids in sediments including the Green River Shale (Eocene) and Scottish Torbanite (Carboniferous). pp. 315–334.In: G. D. Hobson and D. Speers (Eds.), Advances in Organic Geochemistry, Oxford: Pergamon Press. (Published 1970.)Google Scholar
  17. Dürckheimer, W. 1959. Untersuchungen über o-Chinone. Ph.D. Dissertation, Univ. of Mainz.Google Scholar
  18. Flaig, W. 1968. Biochemical factors in coal formation. pp. 197–232.In: D. G. Murchison and T. S. Westoll (Eds.), Coal and Coal-bearing Strata, Amsterdam: Elsevier Publ. Co. Inc.Google Scholar
  19. Freudenberg, K. &A. C. Neish 1968. Constitution and Biosynthesis of Lignin. pp. 1–229.In: A. Kleinzeller, G. F. Springer and H. G. Wittmann (Eds.), Molecular Biology, Biochemistry and Biophysics, 2. New York: Springer-Verlag, Inc.Google Scholar
  20. Han, J., E. D. McCrathy, W. Van Hoeven &M. Calvin 1968. Organic Geochemical Studies, II. A preliminary report on the distribution of Aliphatic Hydrocarbons in algae, in bacteria, and in a Recent lake sediment. Proc. Natl. Acad. U.S.A.,59: 29–33.CrossRefGoogle Scholar
  21. Harris, T. M. 1951. Notes of the Jurassic flora of Yorkshire, 49–51. Annals and Magazine, Natural History. Series 12,4: 915–937.Google Scholar
  22. Henderson, W., V. Wollrab &G. Eglinton 1968. Identification of steranes and triterpanes from a geological source by capillary gas liquid chromatography and mass spectroscopy. pp. 181–207.In: P. A. Schenck and I. Havenaar (Eds.), Advances in Organic Geochemistry, Oxford: Pergamon Press, Inc.Google Scholar
  23. Hüben, R. S. &E. Littman 1934. The resinification of sugars by acids and its bearing on the determination of lignin. Ber. Deutsch. Chem. Ges.,67B: 1551.Google Scholar
  24. Hoel, P. G., S. C. Port &C. J. Stone 1971. Introduction to Probability Theory. Boston: Houghton Mifflin Co.Google Scholar
  25. Horner, L. &W. Dürckheimer 1958. Zur Kenntnis der o-Chinone, XI. Die Struktur des dimeren o-Benzochinons. Chem. Ber.91: 2532.CrossRefGoogle Scholar
  26. Hunneman, D. H. &G. Eglinton 1968. Gas Chromatographic—mass spectrometric identification of long chain hydroxyacids in plants and sediments. pp. 157–165.In: P. A. Schenck and I. Havenaar (Eds.), Advances in Organic Geochemistry, Oxford: Pergamon Press, Inc.Google Scholar
  27. Kräusel, R. 1960.Spongiophyton nov. gen. (Thallophyta) eHaplostigma Seward (Pteridophyta) no Devonia no Inferior do Parana. Mongr. Dep. Nac. Prod. Min. Div. Geol. Miner.,15: 1–41.Google Scholar
  28. Kräusel, R. &B. S. Venkatachala 1966. Devonische Spongiophytaceen aus Ostund West-Asien. Senkenberg. leth.,47: 215–251.Google Scholar
  29. Kräusel, R. &B. S. Venkatachala &H. Weyland 1932. Pflanzenreste aus dem Devon, IV, V. Senkenbergiana14(6): 391–406.Google Scholar
  30. Lang, W. H. 1937. On the plant remains from the Downtonian of England and Wales. Roy. Soc. London Phil. Trans. B,227: 245–291.CrossRefGoogle Scholar
  31. Lang, W. H. 1945.Pachytheca and some anomalous early plants (Prototaxites, Nematothallus, Parka, Foerstia, Orvillea n.g.). Journ. Linn. Soc., Botany,52: 535–552.CrossRefGoogle Scholar
  32. Manskaya, S. M. &L. A. Kodina 1960. Biosynthesis and decomposition of lignin. (Covetsts. pochiwii biochim. Lignina, 1958). Trudi inst. lesochoz. problem i chimii drevesini AN latv SSR,19: 13.Google Scholar
  33. Miller, J. D. A. 1962. Fats and steroids, pp. 357–370.In: R. A. Lewin (Editor), Physiology and Biochemistry of Algae, New York: Academic Press, Inc.Google Scholar
  34. Niklas, K. J. 1974. Some problematic Algae of the Paleozoic. Ph.D. Thesis, University of Illinois (Urbana-Champaign).Google Scholar
  35. Niklas, K. J. 1976a. Chemotaxonomy ofParka decipiens from the Lower Old Red Sandstone, Scotland (U. K.) Rev. Palaeobot. Palynol.21: 205–217.CrossRefGoogle Scholar
  36. - 1976b [In press.] Chemotaxonomy ofPrototaxites and evidence for possible terrestrial adaptation. Rev. Palaeobot. Palynol.Google Scholar
  37. - In press. Morphological and ontogenetic reconstructions ofParka decipiens from the Lower Old Red Sandstone, Scotland (U. K.), and their possible relationships to Pachytheca. Roy. Geol. Soc., Edinburgh.Google Scholar
  38. -& W. G. Chaloner 1976 [In press.] Chemotaxonomy of some problematic Paleozoic plants. Rev. Palaeobot. Palynol.21. Google Scholar
  39. -,T. L. Phillips & A. V. Carozzi In press. Morphology and paleoecology ofProtosalvinia from the Upper Devonian (Famennian) of the Middle Amazon Basin of Brazil. Palaeontographica, Abt. B.Google Scholar
  40. Parker, P. L. &R. F. Leo 1967. Fatty acids in blue-green algal mat communities. Science148: 373.CrossRefGoogle Scholar
  41. Phillips, T. L., K. J. Niklas &H. N. Andrews 1972. Morphology and vertical distribution ofProtosalvinia (=Foerstia) from the New Albany Shale (Upper Devonian). Rev. Palaeobot. Palynol.,14: 171–196.CrossRefGoogle Scholar
  42. Read, D. E. &C. B. Purves 1952. Isolation of penta-and 1,2,4, 5-benzenetetracarboxylic acids from wood lignins oxidized with alkaline permanganate. J. Amer. chem. Soc.,74: 120.CrossRefGoogle Scholar
  43. Rogers, M. A. 1965. Organic geochemistry of some Devonian Black Shales from Eastern North America: Carbohydrates. Ph.D. Thesis, University of Minneapolis, Minn.Google Scholar
  44. Schlenk, H., H. K. Mangold, J. L. Gellerman, W. E. Link, R. A. Morrissettc, R. T. Holman &H. Hayes 1960. Comparative analytical studies of fatty acids of the algaChlorella pyrenoidosa. J. Amer. Oil Chemists’ Soc.,37: 547–552.CrossRefGoogle Scholar
  45. Schopf, J. M., E. Menchcr, A. J. Boucott & H. N. Andrews 1966. Erect plants in the early Silurian of Maine. Prof. Pap. U. S. Geol. Surv., D69-D75.Google Scholar
  46. Schopf, J. M., E. Menchcr, A. J. Boucott &H. N. Andrews &J. F. Schwietcring 1970. TheFoerstia zone of the Ohio and Chattanooga Shales. U. S. Geol. Surv. Bull.,1294-H: 1–15.Google Scholar
  47. Seifert, K. 1962. Die chemische Veränderung der Holzzellwandkomponenten unter dem Einflusspflanzlicher und Tierischer Schädlinge, II. Abbau vonPinus sylvestris L. durchConiophora cerebella pers. Holzforch,16: 102.CrossRefGoogle Scholar
  48. Smith, P. V. 1954. Studies in the origin of petroleum: occurrence of hydrocarbons in recent sediments. Bull. Amer. Ass. Petrol. Chem.,38: 372–404.Google Scholar
  49. Snigirevskaya, N. S. 1971. Application of the scanning electron microscope to botany. Botanischeskii Zhurnal56(4): 549–558. [In Russian.]Google Scholar
  50. Swain, F. M., J. M. Bratt &S. Kirkwood 1967. Carbohydrate components of some Palaeozoic plant fossils. J. Paleo.41: 686–689.Google Scholar
  51. Swain, F. M., J. M. Bratt &S. Kirkwood 1968. Possible biochemical evolution of carbohydrates of some Palaeozoic plants. J. Paleo.,42(4): 1078–1082.Google Scholar
  52. VanKrevelen, D. W. &J. Schuyer 1957. Coal Science. Amsterdam: Elsevier Publishing Co.Google Scholar
  53. Zalessky, M. D. 1926. Sur les nouvelles algues decouvertes dans le sapropélogéne de Lac Beloc. Rev. gén. Bot.,38: 31–42.Google Scholar

Copyright information

© The New York Botanical Garden 1976

Authors and Affiliations

  • Karl J. Niklas
    • 1
  1. 1.The New York Botanical GardenBronx

Personalised recommendations