Skip to main content
Log in

The taxonomic significance of the structure of plant proteins: A classical taxonomist’s view

  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

Amino acid sequences of proteins such as cytochrcmec are potentially very useful taxonomically at the level of families and orders, because they are precise, relatively stable, and independent of the traditional characters. Their proper use, however, is complex and difficult. Simple comparisons have very limited value; there are more differences between maize and wheat than between maize and some dicotyledons. Computer-generated phylogenetic trees, produced either by various versions of the matrix method or by the ancestral sequence method, avoid some of the problems of comparison by simple inspection, but they cannot securely distinguish parallel from monophyletic changes, nor can they detect all reversions. The necessary assumption of parsimony must sometimes fail, with unknown consequences. Interpretation of the data faces further theoretical problems if the differences turn out to be selective, and perhaps even more serious ones if they do not. Furthermore, there is some reason to suppose that cytochromec of plants is subject to more frequent evolutionary change than that of animals, and more subject to the fixation of parallel and back mutations. The computer-based trees for cytochromec of a limited number of kinds of angiosperms that have so far been produced are out of harmony with all previous phylogenetic systems, and conclusions that have been based on them are seriously discordant with the fossil record. Although no reliance can be placed on conclusions drawn from the limited data now at hand, it may reasonably be hoped that when the sequence data are available for several different proteins for many different taxa, these data will be very useful in helping to resolve questions of relationships of families and orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Anderson, E. 1934. Origin of the angiosperms. Nature133: 462.

    Article  Google Scholar 

  • Becker, H. F. 1969. Fossil plants of the Tertiary Beaverhead Basins in Southwestern Montana. Paleontographica B.127(1-6): 1–144.

    Google Scholar 

  • Boulter, D. 1973a. Amino acid sequences of cytochromec and plastocyanins in phylogenetic studies of higher plants. Syst. Zool.22: 549–553.

    Article  CAS  Google Scholar 

  • Boulter, D. 1973b. The use of amino acid sequence data in the classification of higher plants. pp. 211–216.In: G. Bendz & J. Santesson (Eds.) Chemistry in Botanical Classification. Nobel Symposium25. New York: Academic Press.

    Google Scholar 

  • Boulter, D. 1974. The evolution of plant proteins with special reference to higher plant cytochromec. Current Advances Pl. Sci. Comment. Pl. Sci.8: 1–16.

    Google Scholar 

  • -& D. Peacock 1974. Estimating evolutionary relationships in higher plants from cytochromec and plastocyanin amino acid sequences. 8th Intern. Conf. Numerical Taxonomy, Oeiras, Portugal. (Manuscript in advance of publication.)

  • Boulter, D. et al. 1972. A phylogeny of higher plants based on the amino acid sequences of cytochromec and its biological implications. Proc. Roy. Soc. London B.181: 441–455.

    Google Scholar 

  • Cole, L. C. 1957. Biological clock in the unicorn. Science125: 874–876.

    Article  PubMed  Google Scholar 

  • Cronquist, A. 1955. Phylogeny and taxonomy of the Compositae. Amer. Midl. Naturalist53: 478–511.

    Article  Google Scholar 

  • Cronquist, A. 1968. The evolution and classification of flowering plants. Boston: Houghton Mifflin.

    Google Scholar 

  • Cronquist, A. 1969. On the relationship between taxonomy and evolution. Taxon18: 177–187.

    Article  Google Scholar 

  • Cronquist, A. 1974. Thoughts on the origin of monocotyledons. Symposium on origin and phytogeography of angiosperms. Birbal Sahni Inst. Paleobot. Special Publ.1: 19–24.

    Google Scholar 

  • Dayhoff, M. O. 1972. Atlas of Protein sequence and structure. 5. Silver Spring, Maryland: Nat. Biomed. Res. Found.

    Google Scholar 

  • Dayhoff, M. O. 1973. Atlas of protein sequence and structure. 5. Suppl. 1. Silver Spring, Maryland: Nat. Biomed. Res. Found.

    Google Scholar 

  • Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J. Arnold Arbor.50: 1–35.

    Google Scholar 

  • Doyle, J. A. 1973. Fossil evidence on early evolution of the monocotyledons. Quart. Rev. Biol.48: 399–413.

    Article  Google Scholar 

  • Doyle, J. A. &L. J. Hickey 1972. Coordinated evolution in Potomac Group angiosperm pollen and leaves. Amer. J. Bot.59: 660.

    Google Scholar 

  • Doyle, J. A. &L. J. Hickey 1975 [In press]. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution.In: C. B. Beck (Editor). Origin and early evolution of the angiosperms. New York: Columbia University Press. (Manuscript available in advance of publication.)

    Google Scholar 

  • Eck, R. V. &M. O. Dayhoff 1966. Atlas of protein sequence and structure. 2. Silver Spring, Maryland: Nat. Biomed. Res. Found.

    Google Scholar 

  • Fitch, W. M. 1973. Aspects of molecular evolution. Ann. Rev. Genet.7: 343–380.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. M. &E. Margoliash 1967. Construction of phylogenetic trees. Science155: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. M. &E. Margoliash 1969. The construction of phylogenetic trees. II. How well do they reflect past history? pp. 217–242.In: Structure, Function, and Evolution in Proteins. Brookhaven Symposia in Biol.21. Upton, New York: Brookhaven National Laboratory.

    Google Scholar 

  • Fitch, W. M. &E. Markowitz 1970. An improved method of determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet.4: 579–593.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, A. J. et al. 1971. The transition matrix method for comparing sequences; its use in describing and classifying proteins by their amino acid sequences. Syst. Zool.20: 417–425.

    Article  CAS  Google Scholar 

  • Hickey, L. J. 1971. Evolutionary significance of leaf architectural features in the woody dicots. Amer. J. Bot.58: 469.

    Google Scholar 

  • Hickey, L. J. &J. A. Doyle 1972. Fossil evidence on evolution of angiosperm leaf venation. Amer. J. Bot.59: 661.

    Google Scholar 

  • - & J. A. Wolfe [In press.] The bases of angiosperm phylogeny—Vegetative morphology (Manuscript available in advance of publication).

  • Jukes, T. H. &R. Holmquist 1972. Evolutionary clock: nonconstancy of rate in different species. Science177: 530–532.

    Article  PubMed  CAS  Google Scholar 

  • King, M.-C., &A. C. Wilson 1975. Evolution at two levels in humans and chimpanzees. Science188: 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Kubitzki, K. 1969. Chemosystematische Betrachtungen zur Grossgliederung der Dicotylen. Taxon18: 360–368.

    Article  CAS  Google Scholar 

  • Kubitzki, K. 1972. Probleme der Grosssystematik der Blütenpflanzen. Ber. Deutsch. Bot. Ges.85: 259–277.

    Google Scholar 

  • Lance, G. N. &W. T. Williams 1966. A generalized sorting strategy for computer classifications. Nature212: 218.

    Article  Google Scholar 

  • Lance, G. N. &W. T. Williams 1967. A general theory of classificatory sorting strategies. I. Hierarchical systems. Computer J.9: 373–380.

    Google Scholar 

  • Langley, C. H. &W. M. Fitch 1974. An examination of the constancy of the rate of molecular evolution. J. Molecular Evol.3: 161–177.

    Article  CAS  Google Scholar 

  • Lewontin, R. C. 1974. The genetic basis of evolutionary change. New York: Columbia University Press.

    Google Scholar 

  • Mabry, T. J. 1973. Is the order Centrospermae monophyletic? pp. 275–285.In: G. Bendz & J. Santesson (Eds.) Chemistry in Botanical Classification. Nobel Symposium25. New York: Academic Press.

    Google Scholar 

  • Moore, G. W. et al. 1973. An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J. Theor. Biol.38: 423–457.

    Article  PubMed  CAS  Google Scholar 

  • Muller, J. 1970. Palynological evidence on early differentiation of angiosperms. Biol. Rev. Cambridge Philos. Soc.45: 417–450.

    Article  Google Scholar 

  • Nolan, C. &E. Margoliash 1968. Comparative aspects of primary structure of proteins. Ann. Rev. Biochem.38: 727–790.

    Article  Google Scholar 

  • Peacock, D. &D. Boulter 1975. Use of amino acid sequence data in phylogeny and evaluation of methods using computer simulation. J. Mol. Biol.95: 513–527.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, F. E. 1973. Fossil man. An evolutionary journey. St. Louis: C. V. Mosby Co.

    Google Scholar 

  • Ramshaw, J. A. M. et al. 1972. The time of origin of the flowering plants determined by using amino acid sequence data of cytochromec. New Phytol.71: 773–779.

    Article  CAS  Google Scholar 

  • Raven, P. H. &D. I. Axelrod 1974. Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard.61: 539–673.

    Article  Google Scholar 

  • Simpson, G. G. 1945. The principles of classification and a classification of mammals. Amer. Mus. Nat. Hist. Bull.85: 1–350.

    Google Scholar 

  • Simpson, G. G. 1961. Principles of animal taxonomy. New York: Columbia University Press.

    Google Scholar 

  • Takhtajan, A. 1959. Die Evolution der Angiospermen. Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Takhtadzhyan, A. 1966. Sistema i philogeniya tsvetkovykh rastenii. Leningrad: Moskva. Izdatel’stvo “Nauka.”

    Google Scholar 

  • Takhtajan, A. 1969. Flowering plants. Origin and dispersal. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Thorne, R. F. 1968. Synopsis of a putatively phylogenetic classification of the flowering plants. Aliso6: 57–66.

    Google Scholar 

  • Willis, J. C. 1922. Age and area. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wilson, E. O. 1975. [Review of]Sex andevolution, by G. C. Williams; Science188: 139–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A shorter version of this paper was delivered at a symposium on molecular evolution at the XII International Botanical Congress in Leningrad in 1975.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronquist, A. The taxonomic significance of the structure of plant proteins: A classical taxonomist’s view. Brittonia 28, 1–27 (1976). https://doi.org/10.2307/2805555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.2307/2805555

Keywords

Navigation