The Biodemography of Variation in Human Frailty

Abstract

A population is composed of individuals who are heterogeneous in their susceptibility to death and disease. This heterogeneity is reflected in the age-specific incidence or mortality (hazard) function. This variation has typically been hidden—that is, not measured directly—and has generally been modeled in a purely empirical statistical way, because there is no theory in demography for the distribution of frailty. A substantial fraction of variation in frailty, however, has an underlying genetic basis, for which there is a formal theory. This theory, based on evolutionary biology and on the nature of mendelian transmission, provides prior constraints on the distribution of variation in the population as well as providing methods for identifying genes involved in many important diseases. The accumulating effects of environmental exposures with age are another major component of variation in frailty. In some important instances, this variation and its effect on the age-specific hazard function can also be understood in terms of cause-specific biological processes. These biological considerations may enable demographers to model frailty, and thus mortality, in a better way.

This is a preview of subscription content, access via your institution.

References

  1. Bishop, D. T., & Skolnick, M. H. (1984). “Genetic Epidemiology of Cancer in Utah Genealogies: A Prelude to the Molecular Genetics of Common Cancers.” Journal of Cell Physiology, 3 (suppl.), 63–77.

    Article  Google Scholar 

  2. Bock, G., & Collins, G. M. (1987). Molecular Approaches to Human Polygenic Disease, CIBA Foundation Symposium, No. 130. Chichester, UK: Wiley.

    Book  Google Scholar 

  3. Boerwinkle, E., & Sing, C. F. (1987). “The Use of Measured Genotype Information in the Analysis of Quantitative Phenotypes in Man. Ill: The Role of the Apolipoprotein E Polymorphism in Determining Levels, Variability, and Covariability of Cholesterol, Betalipoprotein, and Triglycerides in a Sample of Unrelated Individuals.” American Journal of Medical Genetics, 27, 567–582.

    Article  Google Scholar 

  4. Boerwinkle, E., Visvikis, S., Welsh, D., Steinmetz, J., Hanash, S. M., & Sing, C. F. (1987). “The Use of Measured Genotype Information in the Analysis of Quantitative Phenotypes in Man. II: Simultaneous Estimation of the Frequencies and Effects of the Apolipoprotein E Polymorphism and Residual Polygenic Effects on Cholesterol, Betalipoprotein and Triglyceride Levels.” Annals of Human Genetics, 51, 211–226.

    Article  Google Scholar 

  5. Bonney, G. E., Lathrop, G. M., & Lalouel, J.-M. (1988). “Combined Linkage and Segregation Analysis Using Regressive Models.” American Journal of Human Genetics, 43, 29–37.

    Google Scholar 

  6. Breslow, N. E., & Day, N. E. (1980). Statistical Methods in Cancer Research (Vol. 1): The Analysis of Case-Control Studies. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  7. —, (1987). Statistical Methods in Cancer Research (Vol. 2): The Design and Analysis of Cohort Studies. Lyon, France: International Agency for Research on Cancer.

    Google Scholar 

  8. Cannon-Albright, L. A., Skolnick, M. H., Bishop, T., Lee, R. G., & Burt, R. W. (1988). “Common Inheritance of Susceptibility to Colonic Adenomatous Polyps and Associated Colorectal Cancers.” New England Journal of Medicine, 319, 533–537.

    Article  Google Scholar 

  9. Chakraborty, R., Ferrell, R. E., Stern, M. P., Haffner, S. M., Hazuda, H. P., & Rosenthal, M. (1986). “Relationship of Prevalence of Non-insulin-dependent Diabetes Mellitus to Amerindian Admixture in the Mexican Americans of San Antonio, Texas.” Genetic Epidemiology, 3, 435–454.

    Article  Google Scholar 

  10. Chakraborty, R., & Weiss, K. M. (1989). “Age-Specific Risks for Cancer as Determined by Multi-stage Models of Carcinogenesis.” In Statistics in Medicine, ed. T. Krishnan. Bombay, India: Himalaya Publishing House, pp. 64–91.

    Google Scholar 

  11. Cook, P. J., Doll, R., & Fellingham, S. A. (1969). “A Mathematical Model for the Age Distribution of Cancer in Man.” International Journal of Cancer, 4, 93–112.

    Article  Google Scholar 

  12. Doll, R., & Peto, R. (1978). “Cigarette Smoking and Bronchial Carcinoma: Dose and Time Relationships Among Regular Smokers and Life-Long Non-smokers.” Journal of Epidemiology and Community Health, 32, 303–313.

    Article  Google Scholar 

  13. — (1980). The Causes of Cancer. Oxford, UK: Oxford University Press.

    Google Scholar 

  14. Elandt-Johnson, R. C. (1971). Probability Models and Statistical Methods in Genetics. New York: Wiley.

    Google Scholar 

  15. Elston, R. C. (1981). “Segregation Analysis.” In Advances in Human Genetics (Vol. 11), eds. H. Harris & K. Hirschhorn. New York: Plenum, pp. 63–120.

    Google Scholar 

  16. — (1986). “Modern Methods of Segregation Analysis.” In Modern Statistical Methods in Chronic Disease Epidemiology, eds. S. H. Moolgavkar & R. L. Prentice. New York: Wiley, pp. 213–224.

    Google Scholar 

  17. Falconer, D. S. (1989). Introduction to Quantitative Genetics (3rd ed.). London: Longman.

    Google Scholar 

  18. Hartl, D. L., & Clark, A. G. (1989). Principles of Population Genetics (2nd ed.). Sunderland, MA: Sinauer.

    Google Scholar 

  19. Hedrick, P. W. (1985). Genetics of Populations. Boston, MA: Jones and Bartlett.

    Google Scholar 

  20. Kahn, P., & Graf, T. (Eds.). (1986). Oncogenes and Growth Control. New York: Springer-Verlag.

    Google Scholar 

  21. Levitan, M. (1988). Textbook of Human Genetics. New York: Oxford University Press.

    Google Scholar 

  22. Lubin, J., & Bale, S. (1987). “Detection of Excess Risk in Family Data” (letter with reply). Genetic Epidemiology, 4, 451–456.

    Article  Google Scholar 

  23. Lynch, H. T., Kimberling, W. J., Biscone, K. A., Lynch, J. F., Wagner, C. A., Brennan, K., Mailliard, J. A., Johnson, P. S., Soori, J. S., & McKenna, P. J. (1986). “Familial Heterogeneity of Colon Cancer Risk.” Cancer, 57, 2089–2096.

    Article  Google Scholar 

  24. Manton, K. G., Malker, H., & Malker, B. (1986). “A Comparison of Temporal Change in U.S. and Swedish Lung Cancer 1950–51 to 1981–82.” Journal of the National Cancer Institute, 77, 665–675.

    Google Scholar 

  25. Manton, K. G., & Soldo, B. J. (1985). “Dynamics of Health Changes in the Oldest Old: New Perspectives and Evidence.” Milbank Memorial Fund Quarterly I Health and Society, 63, 206–285.

    Article  Google Scholar 

  26. Manton, K. G., & Stallard, E. (1984). Recent Advances in Mortality Analysis. New York: Academic Press.

    Google Scholar 

  27. — (1988). Chronic Disease Modelling. Oxford, UK: Charles Griffin.

    Google Scholar 

  28. Marx, J. (1990). “Many Gene Changes Found in Cancer.” Science, 246, 1386–1388.

    Article  Google Scholar 

  29. McKay, F. W, Hanson, M. R., & Miller, R. W. (1982). Cancer Mortality in the United States, 1950–1977, National Cancer Institute Monographs, No. 59. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  30. Moolgavkar, S. H. (1986). “Hormones and Multistage Carcinogenesis.” Cancer Surveys, 5, 635–648.

    Google Scholar 

  31. Moolgavkar, S. H. (In press). “Stochastic Models of Carcinogenesis. In Handt ok of Statistics (Vol. 8), eds. C. R. Rao & R. Chakraborty. New York: Elsevier.

  32. Morton, N. E. (1982). Outline of Genetic Epidemiology. Basel, Switzerland: Karger.

    Google Scholar 

  33. Morton, N. E., and Maclean, C. J. (1974). “Analysis of Family Resemblance. Ill: Complex Segregation of Quantitative Traits.” American Journal of Human Genetics, 26, 489–503.

    Google Scholar 

  34. Motulsky, A. G., Burke, W., Billings, P. R., & Ward, R. H. (1987). “Hypertension and the Genetics of Red Cell Membrane Abnormalities.” In Molecular Approaches to Human Potygenic Disease, CIBA Foundation Symposium, No. 130, eds. G. Bock & G. M. Collins. Chichester, UK: Wiley, pp. 150–160.

    Google Scholar 

  35. Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.

    Google Scholar 

  36. Nei, M., Fuerst, P. A., & Chakraborty, R. (1976). “Testing the Neutral Mutation Hypothesis by Distribution of Single Locus Heterozygosity.” Nature, 262, 491–493.

    Article  Google Scholar 

  37. Ott, J. (1985). Analysis of Human Genetic Linkage. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  38. Robertson, A. (1967). “The Nature of Quantitative Genetic Variation.” In Heritage From Mendel, ed. R. A. Brink. Madison: University of Wisconsin Press, pp. 265–280.

    Google Scholar 

  39. Schottenfeld, D., & Fraumeni, J. F (1981). Cancer Epidemiology and Prevention. Philadelphia, PA: Saunders.

    Google Scholar 

  40. Schwartz, A. G., Boehnke, M., & Moll, P. P. (1988). “Family Risk Index as a Measure of Familial Heterogeneity of Cancer Risk: A Population-Based Study in Metropolitan Detroit.” American Journal of Epidemiology, 128, 524–535.

    Google Scholar 

  41. Sing, C. F., & Boerwinkle, E. (1987). “Genetic Architecture of Inter-individual Variability in Apolipoprotein, Lipoprotein and Lipid Phenotypes.” In Molecular Approaches to Human Polygenic Disease, CIBA Foundation Symposium, No. 130, eds. G. Bock & G. M. Collins. Chichester, UK: Wiley, pp. 99–121.

    Google Scholar 

  42. Sing, C. F., Boerwinkle, E., Moll, R P., & Templeton, A. R. (1988). “Characterization of Genes Affecting Quantitative Traits in Humans.“ In Proceedings of the 2nd International Conference on Quantitative Genetics, eds. B. S. Weir, E. J. Eisen, M. M. Goodman, & G. Namkoong. Sunderland. MA: Sinauer, pp. 250–269.

    Google Scholar 

  43. Teich, N. M. (1986). “Oncogenes and Cancer.” In Introduction to the Cellular and Molecular Biology of Cancer, eds. L. M. Franks & N. M. Teich, Oxford. UK: Oxford University Press, pp. 200–228.

    Google Scholar 

  44. Thompson, J. S., & Thompson, M. W. (1986). Genetics in Medicine (4th ed.). Philadelphia, PA: Saunders.

    Google Scholar 

  45. Trussell, J., & Rodriguez, G. (In press). “Heterogeneity in Demographic Research.” In Convergent Questions in Genetics and Demography, eds. J. Adams, A. Hermalin, D. Lam, & P. E. Smouse. New York: Oxford University Press. UNSCEAR (United Nations Scientific Committee on the

  46. Effects of Atomic Radiation. (1988). “Radiation Carcinogenesis in Man.” In Sources, Effects, and Risks of Ionizing Radiation. New York: United Nations, pp. 405–543.

    Google Scholar 

  47. Vaupel, J. W. (1988). “Inherited Frailty and Longevity.” Demography, 25, 227–287.

    Article  Google Scholar 

  48. Vaupel, J. W. (In press-a). “Kindred Lifetimes: Frailty Models in Population Genetics.” In Convergent Questions in Genetics and Demography, eds. J. Adams, A. Hermalin, D. Lam, & P. E. Smouse. New York: Oxford University Press.

  49. Vaupel, J. W. (In press-b). “Relatives' Risks: Frailty Models of Life History Data.” Theoretical Population Biology.

  50. Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). “The Impact of Heterogeneity on Individual Frailty on the Dynamics of Mortality.” Demography, 16, 439–454.

    Article  Google Scholar 

  51. Vaupel, J. W, & Yashin, A. I. (1985). “Heterogeneity's Ruses: Some Surprising Effects of Selection on Population Dynamics.” The American Statistician, 39, 176–185.

    Article  Google Scholar 

  52. Vogel, F., & Motulsky, A. G. (1986). Human Genetics (2nd ed.). New York: Springer-Verlag.

    Google Scholar 

  53. Weiss, K. M. (1985). “Phenotype Amplification' as Illustrated by Cancer of the Gallbladder in New World Peoples.” In Etiology of Complex Diseases in Small Populations: Ethnic Differences and Research Approaches, eds. R. Chakraborty & E. J. E. Szathmary. New York: Liss, pp. 179–198.

    Google Scholar 

  54. — (1989). “Are the Known Causes of Death Related to the Human Life Span and Its Determination?” American Journal of Human Biology, 1, 307–320.

    Article  Google Scholar 

  55. Weiss, K. M. (In press-a). “Biology, Homology, and Epidemiology.” In Convergent Issues in Genetics and Demography, eds. A. Hermalin, J. Adams, D. Lam, & P. E. Smouse. New York: Oxford University Press.

  56. Weiss, K. M. (In press-b). “Medieval Mappaemundi and the Conceptual Map of Genetics.” In Papers in Honor of William J. Schull (as yet untitled festschrift volume), eds. C. F. Sing & C. L. Hanis. Oxford, UK: Oxford University Press.

  57. Weiss, K. M., & Chakraborty, R. (1984). “Multistage Models and the Age Pattern of Familial Polyposis Coli.” Cancer Investigation, 2, 443–448.

    Article  Google Scholar 

  58. — (1990). “Multistage Models and the Age-Patterns of Cancer: Does the Statistical Analogy Imply Genetic Homology?” In Familial Adenomatous Polyposis, ed. L. Herera. New York: Liss, pp. 79–91.

    Google Scholar 

  59. Weiss, K. M., Chakraborty, R., Majumder, P. P., & Smouse, P. E. (1982). “Problems in the Assessment of Relative Risk of Chronic Disease Among Biological Relatives of Affected Individuals.” Journal of Chronic Diseases (now Journal of Clinical Epidemiology), 35, 539–551.

    Article  Google Scholar 

  60. Weiss, K. M., Chakraborty, R., Smouse, P. E., Buchanan, A. V., & Strong, L. C. (1986). “Familial Aggregation of Cancer in Laredo, Texas: A Generally Low-Risk Mexican-American Population.” Genetic Epidemiology, 3, 121–143.

    Article  Google Scholar 

  61. Weiss, K. M., Ferrell, R. E., & Hanis, C. L. (1984). “A New World Syndrome of Metabolic Diseases With a Genetic and Evolutionary Basis.” Yearbook of Physical Anthropology, 27, 153–178.

    Article  Google Scholar 

  62. White, R., & Lalouel, J.-M. (1987). “Investigation of Genetic Linkage in Human Families.” Advances in Human Genetics, 16, 121–228.

    Google Scholar 

  63. Whittemore, A., & Keller, J. B. (1978). “Quantitative Theories of Carcinogenesis.” SIAM Review, 20, 1–30.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weiss, K.M. The Biodemography of Variation in Human Frailty. Demography 27, 185–206 (1990). https://doi.org/10.2307/2061448

Download citation

Keywords

  • Hazard Function
  • Environmental Exposure
  • Familial Hypercholesterolemia
  • Familial Hypercholesterolemia
  • Frailty Model