Effect of adjustment for sex composition in the measurement of fertility on intrinsic rates


The inconsistencies inherent in the one-sex models created a need for the construction of what are known as marriage functions, especially for the measurement of fertility. But attempts to develop marriage functions have been frustrated by the inability of the proposed functions to meet certain consistency conditions and also by difficulties in empirically determining function parameters. Among several functions proposed so far, Das Gupta’s (1972) “effective population” deserves special mention. He uses both sexes in its formulation, and has shown that the constancy of fertility rates based on such a function together with the constancy of survivorship probabilities of both sexes would result in a stable population.

It is suggested in this article that the major source of the problem in a two-sex model seems to be the requirement that the model has to be specific both for sex and age. The idea of incorporating the relative composition of one sex in the age-specific rates of the other, thereby creating a function dependent on both sexes, is advanced in this article. Such functions, defined explicitly for births, can be easily translated into age-specific birth rates. In addition to simplicity in the definition and form, the conditions leading toward stability can also be established. Interestingly enough, the intrinsic rate for this two-sex model lies in the interval determined by the rates obtained from the two one-sex models.

This is a preview of subscription content, access via your institution.


  1. Coale, Ansley J. 1972. The Growth and Structure of Human Populations: A Mathematical Investigation. Princeton: Princeton University Press.

    Google Scholar 

  2. Das Gupta, 1972. On Two-Sex Models Leading to Stable Populations. Theoretical Population Biology 3:348–375.

    Google Scholar 

  3. —. 1973. Growth in U.S. Population, 1940–1971, in the Light of an Interactive Two-Sex Model. Demography 10:543–565.

    Article  Google Scholar 

  4. Feeney, Griffith M. 1972. Marriage Rates and Population Growth: The Two-Sex Problem in Demography. Unpublished Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  5. Karmel, P. H. 1947. The Relations between Male and Female Reproduction Rates. Population Studies 1:249–274.

    Article  Google Scholar 

  6. —. 1948. Analysis of the Sources and Magnitudes of Inconsistencies Between Male and Female Net Reproduction Rates in Actual Populations. Population Studies 2:240–273.

    Article  Google Scholar 

  7. Kendall, D. G. 1949. Stochastic Processes and Population Growth. Journal of the Royal Statistical Society, Series B, 11:230–264.

    Google Scholar 

  8. Keyfitz, Nathan, 1968. Introduction to the Mathematics of Population. Reading, Mass.: Addison Wesley.

    Google Scholar 

  9. —. 1971. The Mathematics of Sex and Marriage. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability 4:89–108.

    Google Scholar 

  10. — and W. Flieger. 1971. Population: Facts and Methods of Demography. San Francisco: W. H. Freeman.

    Google Scholar 

  11. Knibbs, G. H. 1917. Census of the Commonwealth of Australia, 1911. Vol. I, Appendix A, Section XII, pp. 175–232. Sydney: Government of Australia.

    Google Scholar 

  12. McFarland, D. D. 1970. Effects of Group Size on the Availability of Marriage Partners. Demography 7:411–415.

    Article  Google Scholar 

  13. —. 1972. Comparison of Alternative Marriage Models. Pp. 89–106 in T. N. E. Greville (ed.), Population Dynamics. New York: Academic Press.

    Google Scholar 

  14. Partlett, B. 1972. Can There Be a Marriage Function? Pp. 107–135 in T. N. E. Greville (ed.), Population Dynamics. New York: Academic Press.

    Google Scholar 

  15. Pollard, J. H. 1971, Mathematical Models of Marriage. Presented to the Fourth Conference on the Mathematics of Population, Honolulu, July 28–August 1.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitra, S. Effect of adjustment for sex composition in the measurement of fertility on intrinsic rates. Demography 13, 251–257 (1976). https://doi.org/10.2307/2060804

Download citation


  • Stable Population
  • Intrinsic Rate
  • Birth Function
  • Fertility Measurement
  • Birth Statistic