Skip to main content
Log in

The influence of subsurface hydrology on nutrient supply and smooth cordgrass (Spartina alterniflora) production in a developing barrier island marsh

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The supply of nutrients from surface and subsurface water flow into the root zone was measured in a developing barrier island marsh in Virginia. We hypothesize that high production of tall-formSpartina alterniflora in the lower intertidal zone is due to a greater nitrogen input supplied by a larger subsurface flux. Individual nitrogen inputs to the tall-form and short-formS. alterniflora root zones were calculated from water flow rates into the root zone and the nutrient concentration corresponding to the source of the flow. Total dissolved inorganic nitrogen (DIN) input (as ammonium and nitrate) was then calculated using a summation of the hourly nutrient inputs to the root zone over the entire tidal cycle based on hydrologic and nutrient data collected throughout the growing season (April–August) of 1993 and 1994. Additionally, horizontal water flow into the lower intertidal marsh was reduced experimentally to determine its effects on nutrient input and plant growth. Total ammonium (NH4 +) input to the tall-formS. alterniflora root zone (168 μmoles 6 h−1) was significantly greater relative to the short-form (45 μmoles 6 h−1) during flood tide. Total NH4 + input was not significantly different between growth forms during ebb tide, and total nitrate (NO3 ) and total DIN input were not significantly different between growth forms during either tidal stage. During tidal flooding, vertical flow from below the root zone accounted for 71% and horizontal flow from the adjacent mudflat accounted for 19% of the total NH4 + input to the tall-formS. alterniflora root zone. Infiltration of flooding water accounted for 15% more of the total NO3 input relative to the total NH4 + input at both zones on flood tide. During ebb tide, vertical flow from below the root zone still accounted for the majority of NH4 + and NO3 input to both growth forms. After vertical flow, horizontal subsurface flow from upgradient accounted for the next largest percentages of NH4 + and NO3 input to both growth forms during ebb tide. After 2 yr of interrupted subsurface horizontal flow to the tall-formS. alterniflora root zone, height and nitrogen content of leaf tissue of treatment plants were only slightly, but significantly, lower than control plants. The results suggest that a dynamic supply of DIN (as influenced by subsurface water flows) is a more accurate depiction of nutrient supply to macrophytes in this developing marsh, relative to standing stock nutrient concentrations. The dynamic subsurface supply of DIN may play a role in spatial patterns of abovegroundS. alterniflora production, but determination of additional nitrogen inputs and the role of belowground production on nitrogen demand need to also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agosta, K. 1985. The effect of tidally induced changes in the creekbank water table on porewater chemistry.Estuarine, Coastal and Shelf Science 21:389–400.

    Article  CAS  Google Scholar 

  • Bilger, R. W. andM. J. Atkinson. 1995. Effects of nutrient loading on mass-transfer rates to a coral reef community.Limnology and Oceanography 40:279–289.

    Article  CAS  Google Scholar 

  • Bradley, S. W. andJ. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics inSpartina alterniflora.Ecology 71:282–287.

    Article  CAS  Google Scholar 

  • Broome, S. W., W. W. Woodhouse, andE. D. Seneca. 1975. The relationship of mineral nutrients to growth ofSpartina alterniflora in North Carolina: I. Nutrient status plants and soils in natural stands. II. The effects of N,P, and Fe fertilizers.Proceedings of the Soil Science Society of America 39:295–307.

    CAS  Google Scholar 

  • Chalmers, A. G. 1982. Soil dynamics and the productivity ofSpartina alterniflora, p. 231–242.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Chambers, R. M. andJ. W. Fourqurean. 1991. Alternative criteria for assessing nutrient limitation of a wetland macrophyte (Peltandra virginica (L.) Kunth).Aquatic Botany 40:305–320.

    Article  CAS  Google Scholar 

  • Chambers, R. M., J. M. Harvey, andW. E. Odum. 1992. Ammonium and phosphate dynamics in a Virginia salt marsh.Estuaries 15:349–359.

    Article  CAS  Google Scholar 

  • Chambers, R. M. andW. E. Odum. 1990. Porewater oxidation, dissolved phosphate, and the iron curtain: Iron-phosphate relations in tidal freshwater marshes.Biogeochemistry 10:37–52.

    Article  CAS  Google Scholar 

  • Childers, D. L. 1994. Fifteen years of marsh flumes: A review of marsh-water column interactions in Southeastern USA estuaries, p. 277–293.In W. J. Mitsch (ed.), Global Wetlands: Old World and New. Elsevier Science, New York.

    Google Scholar 

  • Cline, J. D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters.Limnology and Oceanography 14: 454–458.

    Article  CAS  Google Scholar 

  • Craft, C. B., S. W. Broome, andE. D. Seneca. 1988. Nitrogen, phosphorus and carbon pools in natural and transplanted marsh soils.Estuaries 11:272–280.

    Article  CAS  Google Scholar 

  • Currin, C. A., S. B. Joye, andH. W. Paerl. 1996. Diel rates of N2-fixation and denitrification in a transplantedSpartina alterniflora marsh: Implications for N-flux dynamics.Estuarine, Coastal and Shelf Science 42:597–616.

    Article  CAS  Google Scholar 

  • D’Avanzo, C. 1990. Long-term evaluation of wetland creation projects, p. 487–496.In J. A. Kusler and M. E. Kentula (eds.), Wetland Creation and Restoration: The Status of the Science. Island Press, Washington, D.C.

    Google Scholar 

  • Day, J. W., Jr.,C. A. S. Hall, W. M. Kemp, andA. Yanez-Arancibia. 1989. Estuarine Ecology. John Wiley and Sons, New York.

    Google Scholar 

  • DeLaune, R. D. andS. R. Pezeshki. 1988. Relationships of mineral nutrients to growth ofSpartina alterniflora in Louisiana salt marshes.Northeast Gulf Science 10:55–60.

    Google Scholar 

  • Freeze, R. A. andJ. A. Cherry. 1979. Groundwater. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

    Google Scholar 

  • Gosselink, J. G. andR. E. Turner. 1978. The role of hydrology in freshwater wetland ecosystems, p. 63–78.In R. E. Good, D. F. Wigham, and R. L. Simpson (eds.), Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York.

    Google Scholar 

  • Harvey, J. W. 1990. Hydrological transport in tidal marsh soils: Controls on solute cycling at three scales. Ph.D. Dissertation, Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Harvey, J. W., R. M. Chambers, andJ. R. Hoelscher. 1995. Preferential flow and segregation of porewater solutes in wetland sediment.Estuaries 18:568–578.

    Article  CAS  Google Scholar 

  • Harvey, J. W., P. F. Germann, andW. E. Odum. 1987. Geomorphological control of subsurface hydrology in the creekbank zone of tidal marshes.Estuarine, Coastal and Shelf Science 25: 677–691.

    Article  Google Scholar 

  • Harvey, J. W. andW. K. Nuttle. 1995. Fluxes of water and solute in a coastal wetland sediment. 2. Effect of macropores on solute exchange with surface water.Journal of Hydrology 164:109–125.

    Article  CAS  Google Scholar 

  • Harvey, J. W. andW. E. Odum. 1990. The influence of tidal marshes on upland groundwater discharge to estuaries.Biogeochemistry 10:217–236.

    Article  Google Scholar 

  • Hemond, H. F. andJ. L. Fifield. 1982. Subsurface flow in salt marsh peat: A model and field study.Limnology and Oceanography 27:126–136.

    Google Scholar 

  • Hemond, H. F., W. K. Nuttle, R. W. Burke, andK. D. Stlzenbach. 1984. Surface infiltration in salt marshes: Theory, measurement, and biogeochemical implications.Water Resources Research 20:591–600.

    Article  CAS  Google Scholar 

  • Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems.Annual Review of Ecology. 19:89–110.

    Article  Google Scholar 

  • Howes, B. L. andD. D. Goehringer. 1994. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh.Marine Ecology Progress Series 114:289–301.

    Article  CAS  Google Scholar 

  • Hussey, B. H. 1989. Evapotranspiration in tidal marshes. M.S. Thesis. Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Hvorsley, M. J. 1951. Time lag and soil permeability in ground water observations. Bulletin 36. United States Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Jordan, T. E. andD. L. Correll 1985. Nutrient chemistry and hydrology of interstitial water in brackish tidal marshes of Chesapeake Bay.Estuarine, Coastal and Shelf Science 21:45–55.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. F. Whigham. 1983. Nutrient flux in the Rhode River: Tidal exchange of nutrients by brackish marshes.Estuarine, Coastal, and Shelf Science 17:651–667.

    Article  CAS  Google Scholar 

  • Johannes, R. E., J. Alberts, C. D’Elia, R. A. Kinzie, L. R. Pomeroy, W. Sottile, W. Wiebe, J. A. Marsh, Jr.,P. Helfrich, J. Maragos, J. Meyer, S. Smith, D. Crabtree, A. Roth, L. R. McCloskey, S. Betzer, N. Marshall, M. E. Q. Pilson, G. Telek, R. I. Clutter, W. D. DuPaul, K. Webb, andJ. M. Wells, Jr. 1972. The metabolism of some coral reef communities: A team study of nutrient and energy flux at Eniwetok.BioScience 22:541–543.

    Article  Google Scholar 

  • Jones, M. N. 1984. Nitrate reduction by shaking with cadmium: Alternative to cadmium columns.Water Research 18:643–646.

    Article  CAS  Google Scholar 

  • King, G. M., M. J. Klug, R. G. Wiegert, andA. G. Chalmers. 1982. Relation of soil water movement and sulfide concentration toSpartina alterniflora production in a Georgia salt marsh.Science 218:61–63.

    Article  CAS  Google Scholar 

  • Langis, R.-M. Zaleiko, andJ. B. Zedler. 1991. Nitrogen assessments in a constructed and a natural salt marsh of San Diego Bay.Ecological Applications 1:40–51.

    Article  Google Scholar 

  • Lindau, C. W. andL. R. Hossner. 1981. Substrate characterization of an experimental marsh and three natural marshes.Journal of the Soil Science Society of America 45:1171–1176.

    CAS  Google Scholar 

  • Linthurst, R. A. andE. D. Seneca. 1980. The effects of standing water and drainage potential on theSpartina alterniflora substrate complex in a North Carolina marsh.Estuarine and Coastal Marine Science 11:41–52.

    Article  CAS  Google Scholar 

  • Lodge, D. M., D. P. Krabbenhoft, andR. G. Striegl. 1989. A positive relationship between groundwater velocity and submersed macrophyte biomass in Sparkling Lake, Wisconsin.Limnology and Oceanography 34:235–239.

    Google Scholar 

  • Mendelssohn, I. A. 1979. Nitrogen metabolism in the height forms ofSpartina alterniflora in North Carolina.Ecology 60: 574–584.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A. andE. D. Seneca. 1980. The influence of soil drainage on the growth of salt marsh cordgrassSpartina alterniflora in North Carolina.Estuarine and Coastal Marine Science 11:27–40.

    Article  Google Scholar 

  • Morris, J. T. 1982. A model of growth responses bySpartina alterniflora to nitrogen limitation.Journal of Ecology 70:25–42.

    Article  Google Scholar 

  • Morris, J. T. 1991. Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition.Annual Reviews of Ecological Systems 22:257–279.

    Article  Google Scholar 

  • Nuttle, W. K. andJ. W. Harvey. 1995. Fluxes of water and solute in a coastal wetland sediment. 1. The contribution of regional groundwater discharge.Journal of Hydrology 164:89–107.

    Article  Google Scholar 

  • Odum, E. P., J. T. Finn, andE. H. Franz. 1979. Perturbation theory and the subsidy-stress gradient.Bioscience 29:349–352.

    Article  Google Scholar 

  • Odum, W. E., E. P. Odum, andH. T. Odum. 1995. NatureVs publing paradigm.Estuaries 18:547–555.

    Article  Google Scholar 

  • Osgood, D. T. 1981. Factors controlling production and tissue element composition in naturally developingSpartina alterniflora barrier island marshes. M.S. Thesis, Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Osgood, D. T. 1996. Vegetation patterns and nutrient dynamics in naturally-developing barrier island marshes. Ph.D. Dissertation, Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Osgood, D. T., M. C. F. V. Santos, andJ. C. Zieman. 1995. Sediment physico-chemistry associated with natural marsh development on a storm-deposited sand flat.Marine Ecology Progress Series 20:271–283.

    Article  Google Scholar 

  • Osgood, D. T. andJ. C. Zieman. 1993. Spatial and temporal patterns of substrate physicochemical parameters in differentaged barrier island marshes.Estuarine, Coastal and Shelf Science 37:421–436.

    Article  CAS  Google Scholar 

  • Parrando, R. T., J. G. Gosselink, andC. S. Hopkinson. 1978. Effects of salinity and drainage on the growth of three salt marsh grasses.Botanical Gazette 139:102–107.

    Article  Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, United Kingdom.

    Google Scholar 

  • Patrick, W. H., Jr, andR. D. DeLaune. 1972. Characterization of the oxidised and reduced zones in flooded soil.Soil Science Society of American Proceedings 36:573–576.

    CAS  Google Scholar 

  • Patrick, W. H., Jr. andR. D. DeLaune. 1977. Chemical and biological redox systems affecting nutrient availability in the coastal wetlands.Geoscience and Man 19:131–137.

    Google Scholar 

  • Scudlark, J. R. andT. M. Church. 1989. The sedimentary flux of nutrients at a Delaware salt marsh site: A geochemical perspective.Biogeochemistry 7:55–75.

    Article  Google Scholar 

  • Valiela, I. andJ. M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem.Nature 280:652–656.

    Article  CAS  Google Scholar 

  • Whiting, G. andD. L. Childers. 1989. Subtidal advective water as a potentially important nutrient input to southeastern U.S.A. salt marsh estuaries.Estuarine, coastal and Shelf Science 28:417–431.

    Article  CAS  Google Scholar 

  • Wiegert, R. G., A. Chalmers, andP. F. Randerson. 1983. Productivity gradients in salt marshes: The response ofSpartina alterniflora to experimentally manipulated soil water movement.Oikos 41:1–6.

    Article  Google Scholar 

  • Wolaver, T. G. andJ. C. Zieman. 1983. Effect of water column, sediment and time over the tidal cycle on the chemical composition of tidal water in a mesohaline marsh.Marine Ecology Progress Series. 12:123–130.

    Article  CAS  Google Scholar 

  • Wolaver, T. G. andJ. C. Zieman. 1984. The role of tall and mediumSpartina alterniflora zones in the processing of nutrients in tidal water.Estuarine, Coastal and Shelf Science 19:1–13.

    Article  CAS  Google Scholar 

  • Yelverton, G. F. andC. T. Hackney. 1986. Flux of dissolved organic carbon and pore water through the substrate ofSpartina alterniflora marsh in North Carolina.Estuarine, Coastal and Shelf Science 22:255–267.

    Article  CAS  Google Scholar 

Sources of Unpublished Materials

  • Personal communication: J. P. Walsh, Department of Environmental Sciences, Clark Hall, University of Virginia, Charlottesville, Virginia 22903.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Osgood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osgood, D.T., Zieman, J.C. The influence of subsurface hydrology on nutrient supply and smooth cordgrass (Spartina alterniflora) production in a developing barrier island marsh. Estuaries 21, 767–783 (1998). https://doi.org/10.2307/1353280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353280

Keywords

Navigation