Skip to main content
Log in

Investigations of the availability and survival of submersed aquatic vegetation propagules in the tidal Potomac River

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The establishment of submersed aquatic vegetation (SAV) at unvegetated sites in the freshwater tidal Potomac River was limited primarily by factors other than propagule availability. For two years, traps were used to quantify the amount of plant material reaching three unvegetated sites over the growing season. The calculated flux values provided a gross estimate of the flux of propagules that could potentially survive if other site factors were suitable. The mean flux ofHydrilla verticillata and all other species (≥0.01 gdw m−2 d−1) appeared sufficient to favor the establishment of vegetation, particularly considering the high viability (70–100%) of whole plants and fragments under controlled conditions. However, median water clarity values (i.e., for light attenuation, Secchi depth, total suspended solids, and chlorophylla) were below SAV restoration goals at all unvegetated sites. Additionally, sediments from unvegetated sites showed a potential for nitrogen limitation of the growth ofH. verticillata. Our findings support the hypothesis that in the tidal Potomac River, water clarity and nutrient (especially nitrogen) levels in sediment are key to plant community establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, S. E., H. M. Grimshaw, J. A. Parkinson, andC. Quarmby. 1974. Chemical analysis of Ecological Materials. John Wiley and Sons, New York.

    Google Scholar 

  • American Public Health Association. 1989. Standard Methods for the Examination of Water and Wastewater, 17th edition. Washington, D.C.

  • Barko, J. W., M. S. Adams, andN. L. Clesceri. 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation.Journal of Aquatic Plant Management 24:1–10.

    Google Scholar 

  • Barko, J. W., D. G. Hardin, andM. S. Matthews. 1982. Growth and morphology of submersed macrophytes in relation to light and temperature.Canadian Journal of Botany 60:877–887.

    Article  Google Scholar 

  • Barko, J. W. andR. M. Smart. 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes.Freshwater Biology 10:229–238.

    Article  CAS  Google Scholar 

  • Barko, J. W. andR. M. Smart. 1981. The growth ofMyriophyllum spicatum L. in relation to selected characteristics of sediment and solution.Aquatic Botany 5:91–103.

    Google Scholar 

  • Barko, J. W. andR. M. Smart. 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes.Ecology 67:1328–1340.

    Article  CAS  Google Scholar 

  • Barko, J. W., R. M. Smart, D. G. McFarland, andR. L. Chen. 1988. Interrelationships between the growth ofHydrilla verticlllata (L.f.) Royle and sediment nutrient availability.Aquatic Botany 32:205–216.

    Article  Google Scholar 

  • Barko, J. W., C. S. Smith, andP. A. Chambers. 1994. Perspectives on submersed macrophyte invasions and declines.Lake and Reservoir Management Journal 10:1–3.

    Google Scholar 

  • Batiuk, R., P. Bergstrom, M. Kemp, E. Koch, L. Murray, J. C. Stevenson, R. Bartleson, V. Carter, N. B. Rybicki, J. M. Landwehr, C. Gallegos, L. Karrh, M. Naylor, D. Wilcox, K. A. Moore, S. Ailstock, and M. Teichberg. 2000. Chesapeake Bay Submerged Aquatic Vegetation Water Quality and Habitat-Based Requirements and Restoration Targets: A Second Technical Synthesis. U.S. Environmental Protection Agency, CBP/TRS 245/00. Annapolis, Maryland.

  • Batiuk, R., P. Heasley, R. Orth, K. Moore, J. C. Stevenson, W. Dennison, L. Staver, V. Carter, N. B. Rybicki, R. E. Hickman, S. Kollar, S. Bieber, and P. Bergstrom. 1992. Chesapeake Bay Submerged Aquatic Vegetation Habitat Requirements and Restoration Goals: A Technical Synthesis. U.S. Environmental Protection Agency, CBP/TRS 83/92. Annapolis, Maryland.

  • Bowes, G., T. K. Van, L. A. Garrard, andW. T. Haller. 1977. Adaptation to low light levels byHydrilla.Journal of Aquatic Plant Management 15:32–35.

    CAS  Google Scholar 

  • Bremner, J. M. 1965. Inorganic forms of nitrogen, p. 1179–1237.In C. A. Black (ed.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Carignan, R. andJ. Kalff. 1980. Phosphorus sources for aquatic weeds, water, or sediments.Science 207:987–989.

    Article  CAS  Google Scholar 

  • Carter, V. andM. G. Haramis. 1980. Distribution and abundance of submersed aquatic vegetation in the Tidal Potomac River—Implications for waterfowl.Atlantic Naturalist 33:14–19.

    Google Scholar 

  • Carter, V., J. E. Paschal, Jr., and N. Bartow. 1985. Distribution and Abundance of Submersed Aquatic Vegetation in the Tidal Potomac River and Estuary, Maryland and Virginia, May 1978 to November 1981. U.S. Geological Survey, Water-Supply Paper 2234-A. Washington, D.C.

  • Carter, V. andN. B. Rybicki. 1986. Resurgence of submersed aquatic macrophytes in the tidal Potomac River, Maryland, Virginia and the District of Columbia.Estuaries 9:368–375.

    Article  Google Scholar 

  • Carter, V. andN. B. Rybicki. 1994. Invasions and declines of submersed macrophytes in the tidal Potomac River and estuary, the Currituck Sound-Back Bay system, and the Pamlico River estuary.Lake and Reservoir Management 10:39–48.

    Article  Google Scholar 

  • Carter, V., N. B. Rybicki, J. M. Landwehr, andM. Turtora. 1994. Role of weather and water quality in population dynamics of submersed macrophytes in the tidal Potomac River.Estuaries 17:417–426.

    Article  Google Scholar 

  • Carter, V., N. B. Rybicki, andM. Turtora. 1996. Effect of increasing photon irradiance on the growth ofVallisneria americana in the tidal Potomac River.Aquatic Botany 54:337–345.

    Article  Google Scholar 

  • Chambers, P. A. andJ. Kalff. 1985. The influence of sediment composition and irradiance on the growth and morphology ofMyriophyllum spicatum L.Aquatic Botany 22:253–263.

    Article  Google Scholar 

  • Conant, R. D., T. K. Van, andK. K. Steward. 1984. MonoeciousHydrilla produces viable seeds in the United States.Aquatics 6:10.

    Google Scholar 

  • Cummings, H. S., W. C. Purdy, andH. P. Ritter. 1916. Investigation of the Pollution and Sanitary Conditions of the Potomac Watershed. Treasury Department, U.S. Public Health Service Hygiene Laboratory, Washington, D.C.

    Google Scholar 

  • Davis, G. J. andM. M. Brinson. 1976. The Submersed Macrophytes of the Pamlico River Estuary, North Carolina, UNC-WRRI-7 6-112. North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. W. Bergstrom, andR. A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation.Bioscience 43:86–94.

    Article  Google Scholar 

  • Denny, P. 1972. Sites of nutrient absorption in aquatic macrophytes.Journal of Ecology 60:477–482.

    Google Scholar 

  • De Vlaming, V. andV. W. Proctor. 1968. Dispersal of aquatic organisms: Viability of seeds recovered from the droppings of captive killdeer and mallard ducks.American Journal of Botany 55:20–26.

    Article  Google Scholar 

  • French, T. D., andP. A. Chambers. 1996. Habitat partitioning in riverine macrophyte communities.Freshwater Biology 36: 509–520.

    Article  Google Scholar 

  • Gerloff, G. C. andP. H. Krombholz. 1996. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants.Limnology and Oceanography 11:529–537.

    Google Scholar 

  • Haag, R. W. 1983. Emergence of seedlings of aquatic macrophytes from lake sediments.Canadian Journal of Botany 61: 148–156.

    Article  Google Scholar 

  • Haller, W. T., J. L. Miller, andL. A. Garrard. 1976. Seasonal production and germination of hydrilla vegetative propagules.Journal Aquatic Plant Management 14:26–29.

    Google Scholar 

  • Haktleb, C. F., J. D. Madsen, andC. W. Boylen. 1993. Environmental factors affecting seed germination inMyriophyllum spicatum L.Aquatic Botany 45:15–25.

    Article  Google Scholar 

  • Haslam, S. M. 1978. River Plants. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kemp, W. M., R. R. Twilley, J. C. Stevenson, W. R. Boynton, andJ. S. Means. 1983. The decline in submerged vascular plants in the upper Chesapeake Bay: Summary of results concerning possible causes.Marine Technology Society Journal 17: 78–89.

    Google Scholar 

  • Kimber, A., J. L. Owens, andW. G. Crumpton. 1995. Light availability and growth of wildcelery (Vallisneria americana) in Upper Mississippi River backwaters.Regulated Rivers: Research and Management 11:167–174.

    Article  Google Scholar 

  • Kiorboe, T. 1980. Distribution and production of submerged macrophytes in Tipper Grund (Ringkobing Fjord, Denmark), and the impact of waterfowl grazing.Journal of Applied Ecology 17:675–687.

    Article  Google Scholar 

  • Kozhova, O. M. andL. A. Izhboldina. 1993. Spread ofElodea canadensis in Lake Baikal.Hydrobiologia 159:203–211.

    Article  Google Scholar 

  • Lai, C. andB. Gopal. 1993. Production and germination of seeds inHydrilla verticillata.Aquatic Botany 45:257–261.

    Article  Google Scholar 

  • Langeland, K. A. 1996.Hydrilla verticillata (L. f.) Royle (Hydrocharitaceae): The perfect plant.Castanea 61:293–304.

    Google Scholar 

  • Langeland, K. A. andC. B. Smith. 1984.Hydrilla produces viable seed in North Carolina lakes.Aquatics 6:20–22.

    Google Scholar 

  • Madsen, J. D., L. W. Eichler, andC. W. Boylen. 1988. Vegetative spread of Eurasian Watermilfoil in Lake George, New York.Journal of Aquatic Plant Management 26:47–50.

    Google Scholar 

  • Madsen, J. D. andD. H. Smith. 1999. Vegetative spread of dioecious Hydrilla colonies in experimental ponds.Journal of Aquatic Plant Management 37:25–29.

    Google Scholar 

  • McFarland, D. G. andJ. W. Barko. 1993. Influence of high temperature on growth and propagule formation in monoecious hydrilla. Proceedings, 28th Annual Meeting, Aquatic Plant Control Research Program, Miscellaneous Paper A-94-2. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • McFarland, D. G. andJ. W. Barko. 1995. Viability and growth of submersed macrophytes-propagules from the Potomac River: Laboratory studies. Proceedings, 29th Annual Meeting, Aquatic Plant Control Research Program, Miscellaneous Paper A-95-3. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • McFarland, D. G. andS. J. Rogers. 1998. The aquatic macrophyte seed bank in lake Onalaska, Wisconsin.Journal of Aquatic Plant Management 36:33–30.

    Google Scholar 

  • Olsen, S. R. andL. E. Sommers. 1982. Phosphorus, p. 403–430.In A. L. Page, R. H. Miller, and D. R. Keeney (eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Orth, R. J., M. Luckenbach, andK. A. Moore. 1994. Seed dispersal in a marine macrophyte: Implications for colonization and restoration.Ecology 75:1927–1939.

    Article  Google Scholar 

  • Patrick, W. H. 1958. Modification of method of particle size analysis. Soil Science Society of America Proceedings 22:366–367.

    Google Scholar 

  • Rybicki, N. B. andV. Carter. 1986. Effect of sediment depth and sediment type on the survival ofVallisneria americana Michx grown from tubers.Aquatic Botany 24:233–240.

    Article  Google Scholar 

  • Rybicki, N. B. and V. Carter. 1995. Revegetation and Propagule Transport in the Tidal Potomac River. Proceedings, 29th Annual Meeting, Aquatic Plant Control Research Program, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

  • Sand-Jensen, K. andM. Sondergaard. 1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark.Freshwater Biology 9:1–11.

    Article  CAS  Google Scholar 

  • SASInstitute Inc. 1991. SAS Version 6.03. Cary, North Carolina.

  • Sculthorpe, C. D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.

    Google Scholar 

  • Smart, R. M. andJ. W. Barko. 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments.Aquatic Botany 21:251–263.

    Article  Google Scholar 

  • Smart, R. M., J. W. Barko, andD. G. McFarland. 1994. Competition betweenHydrilla verticillata andVallisneria americana under Different Environmental Conditions. Technical Report A-94-1. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Spencer, D. F., L. W. Anderson, M. D. Ames, andF. J. Ryan. 1987. Variation inHydrilla verticillata (L. f.) Royle propagule weight.Journal of Aquatic Plant Management 25:11–14.

    Google Scholar 

  • Spink, A. andS. Rogers. 1996. The effects of a record flood on the aquatic vegetation of the Upper Mississippi River System: Some preliminary findings.Hydrobiologia 340:51–57.

    Article  Google Scholar 

  • Steward, K. K. 1972. The phosphorus nutrition ofHydrilla.Florida Scientist 35:5–6.

    Google Scholar 

  • Steward, K. K. 1987. Comparative studies of monoecious and dioecious hydrilla (Hydrilla verticillata) biotypes.Weed Science 35:204–210.

    CAS  Google Scholar 

  • Steward, K. K. 1991. Light requirements for growth of monoeciousHydrilla from the Potomac River.Florida Scientist 54: 204–214.

    Google Scholar 

  • Steward, K. K. 1993. Seed production in monoecious and dioecious populations ofHydrilla.Aquatic Botany 46:169–183.

    Article  Google Scholar 

  • Sutton, D. L. 1996. Depletion of turions and tubers ofHydrilla verticillata in the North New River Canal, Florida.Aquatic Botany 53:121–130.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency. 1982. Handbook for Sampling and Sample Preservation of Water and Wastewater. Environmental Protection Agency 600/4-82-029. Washington, D.C.

  • Van, T. K., G. S. Wheeler, andT. D. Center. 1999. Competition betweenHydrilla verticillata andVallisneria americana as influenced by soil fertility.Aquatic Botany 62:225–233.

    Article  Google Scholar 

  • van Dijk, G. M. andW. van Vierssen. 1991. Survival of aPotamogeton pectinatus L. population under various light conditions in a shallow eutrophic lake (Lake Veluwe) in The Netherlands.Aquatic Botany 39:121–129.

    Article  Google Scholar 

  • Vivian-Smith, G. andE. W. Stiles. 1994. Dispersal of salt marsh seeds on the feet and feathers of waterfowl.Wetlands 14:316–319.

    Article  Google Scholar 

  • Whitton, B. A. 1984. Ecology of European Rivers. Blackwell Scientific Publications, London.

    Google Scholar 

  • Yoder, C. O. 1989. The development and use of biological criteria for Ohio surface waters, p. 139–146.In G. H. Flock (ed.), Water Quality Standards for the 21st Century. U.S. Environmental Protection Agency, Criteria and Standards Division. Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy B. Rybicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybicki, N.B., McFarland, D.G., Ruhl, H.A. et al. Investigations of the availability and survival of submersed aquatic vegetation propagules in the tidal Potomac River. Estuaries 24, 407–424 (2001). https://doi.org/10.2307/1353242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353242

Keywords

Navigation