Skip to main content
Log in

Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Benthic microalgal biomass is an important fraction of the primary producer community in shallow water ecosystems, and the factors controlling benthic microalgal biomass are complex. One possible controlling factor is sediment grain-size distribution. Benthic microalgal biomass was sampled in sediments collected from two sets of North Carolina estuaries Massachusetts and Cape Cod bays, and Manukau Harbour in New Zealand. Comparisons of benthic microalgal biomass and sediment grain-size distributions in these coastal and estuarine ecosystems frequently showed a negative relationship between the proportion of fine-grained sediments and benthic microalgal biomass measured as chlorophylla. The highest sedimentary chlorophylla levels generally occurred in sediments with lower percentages of fine particles (diameter <125 mm). A negative relationship between the proportion of fine sediments and benthic microalgal biomass suggests anthropogenic loadings of fine sediment may reduce the biological productivity of shallow-water ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Amspoker M. C. andC. D. McIntire. 1978. Distribution of intertidal diatoms associated with the sediments in Yaquina estuary, Oregon.Journal of Physicology 14:387–395.

    Article  Google Scholar 

  • Baillie, P. W. andB. L. Welsh. 1980. The effect of tidal resuspension on the distribution of intertidal epipelic algae in an estuary.Estuarine and Coastal Marine Science 10:165–180.

    Article  Google Scholar 

  • Brown, Jr,R. M., G. K. F. Lee, andA. W. Hulbert. 1992. Environmental sampling tools designed for use on a low cost remotely operated vehicle (LCROV), p. 23–30.In L. B. Cahoon (ed.), Diving for Science 1992. American Academy of Underwater Sciences, Costa Mesa, California.

    Google Scholar 

  • Cammen, L. M. 1982. Effect of particle size on organic content and microbial abundance within four marine sediments.Marine Ecology Progress Series 9:273–280.

    Article  Google Scholar 

  • Colijn, F. andK. S. Dijkema. 1981. Species composition of benthic diatoms and distribution of chlorophyll-a on an intertidal flat in the Dutch Wadden Sea.Marine Ecology Progress Series 4: 9–21.

    Article  Google Scholar 

  • Connor, M. S., J. M. Teal, andI. Valiela. 1982. The effect of feeding by mud snails,Ilyanassa obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community.Journal of Experimental Marine Biology and Ecology 65:29–45.

    Article  CAS  Google Scholar 

  • Davis, M. W. andC. D. McIntire. 1983. Effects of physical gradients on the production dynamics of sediment-associated algae.Marine Ecology Progress Series 13:103–114.

    Article  CAS  Google Scholar 

  • Fielding, P. J., J. Damstra, andG. M. Branch. 1988. Benthic diatom biomass, production and sediment chlorophyll in Langebaan Lagoon, South Africa.Estuarine, Coastal and Shelf Science 27:413–426.

    Article  CAS  Google Scholar 

  • Freeman, D. B. 1989. The distribution and trophic significance of benthic microalgae in Masonboro Sound, North Carolina. M.S. Thesis, University of North Carolina at Wilmington, Wilmington, North Carolina.

    Google Scholar 

  • Hughes, E. H. andE. B. Sherr. 1983. Subtidal food webs in a Georgia estuary: Delta13C analysis.Journal of Experimental Marine Biology and Ecology 67:227–242.

    Article  Google Scholar 

  • Ingram, R. L. 1971. Sieve analysis. p. 49–67.In R. E. Carver (ed.). Procedures of Sediment Petrology. John Wiley & Sons, Inc, New York.

    Google Scholar 

  • Lorenzen, C. J. 1967. Determination of chlorophyll and phaeopigments: Spectrophotometric equations.Limnology and Oceanography 12:243–246.

    Article  Google Scholar 

  • Lukatelich, R. J. andA. J. McComb. 1986. Distribution and abundance of benthic microalgae in a shallow southwestern Australian estuarine ecosystem.Marine Ecology Progress Series 27:287–297.

    Article  Google Scholar 

  • Mallin, M. A., J. M. Burkholder, andM. J. Sullivan 1992. Contributions of benthic microalgae to coastal fishery yield.Transactions of the American Fisheries Society 121:691–695.

    Article  Google Scholar 

  • McIntire, C. D. andM. C. Amspoker. 1986. Effects of sediment properties on benthic primary production in the Columbia River estuary.Aquatic Botany 24:249–267.

    Article  Google Scholar 

  • McIntyre, H. L., R. J. Geider, andD. C. Miller. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvergetated, shallow-water marine habitats. I. Distribution, abundance and primary production.Estuaries 19:186–201.

    Article  Google Scholar 

  • Neahoof, J. E. 1994. Effects of water depth and clarity on the distribution and relative abundance of phytoplankton and benthic microalgae in North Carolina estuaries. M.S. Thesis, University of North Carolina at Wilmington, Wilmington, North Carolina.

    Google Scholar 

  • Posey, M. H., C. Powell, L. B. Cahoon, andD. G. Lindquist. 1995. Top down vs. bottom up control of benthic community composition on an intertidal tideflat.Journal of Experimental Marine Biology and Ecology 185:19–31.

    Article  Google Scholar 

  • Riznyk, R. Z. andH. K. Phinney. 1972. The distribution of intertidal phytopsammon in an Oregon estuary.Marine Biology 13:318–324.

    Article  Google Scholar 

  • Shaffer, G. P. andC. P. Onuf. 1983. An analysis of factors influencing the primary production of the benthic microflora in a southern Californian lagoon.Netherlands Journal of Sea Research 17:126–144.

    Article  CAS  Google Scholar 

  • Sigmon, D. E. andL. B. Cahoon. 1997. Comparative effects of benthic microalgae and phytoplankton on dissolved silica fluxes.Aquatic Microbial Ecology 13:275–284.

    Article  Google Scholar 

  • Strickland, J. D. H. andT. R. Parsons. 1972. A practical handbook of sea water analysis.Bulletin of the Fisheries Research Board of Canada 167:185–194.

    Google Scholar 

  • Tilton, C. L. 1996. The effects of benthic microalgae on sediment zinc accumulation. M.S. Thesis, University of North Carolina at Wilmington, Wilmington, North Carolina.

    Google Scholar 

  • Vant, W. N. andB. L. Williams 1992. Residence times of Manukau Harbour, New Zealand.New Zealand Journal of Marine and Freshwater Research 26:393–404.

    Article  Google Scholar 

  • Varela, M. andE. Penas. 1985. Primary production of benthic microalgae in an intertidal sand flat of the Rio de Arosa, NW Spain.Marine Ecology Progress Series 25:111–119.

    Article  Google Scholar 

  • Whiting, M. C. andC. D. McIntire. 1985. An investigation of distributional patterns in the diatom flora of Netarts Bay, Oregon, by correspondence analysis.Journal of Phycology 21:655–661.

    Article  Google Scholar 

  • Whitney, D. E. andW. M. Darley. 1979. A method for the determination of chlorophylla in samples containing degradation products.Limnology and Oceanography 24:183–187.

    CAS  Google Scholar 

Source of Unpublished Material

  • Laws, R. personal communication, Department of Earth Sciences, University of North Carolina at Wilmington, Wilmington, North Carolina.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Cahoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahoon, L.B., Nearhoof, J.E. & Tilton, C.L. Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems. Estuaries 22, 735–741 (1999). https://doi.org/10.2307/1353106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353106

Keywords

Navigation