Advertisement

Estuaries

, Volume 22, Issue 4, pp 1041–1056 | Cite as

Responses of coastal lagoon plant communities to levels of nutrient enrichment: A mesocosm study

  • D. I. TaylorEmail author
  • S. W. Nixon
  • S. L. Granger
  • B. A. Buckley
Article

Abstract

An experiment was conducted to quantify the effects of different levels of nutrient enrichment on the plant communities of temperate coastal lagoons, specifically the lagoons of the northeast U.S. Ten mesocosms, each containing coastal water, lagoon sediments, and plants and animals found in natural lagoons, were subjected to five levels of enrichment. Two mesocosms served as controls, and received no experimental nutrient additions. The remaining 8 mesocosms were enriched in duplicate with ammonium plus phosphate at 1.0 and 0.11 mmol N or P m−2 d−1, 2.0 and 0.19 mmol N or P m−2 d−1, 4.0 and 0.35 mmol N or P m−2 d−1, and 8.0 and 0.67 N or P mmol m−2 d−1. At all levels of enrichment, and through much of the experiment, water column concentrations of dissolved inorganic nitrogen (DIN) were drawn down to background levels. Despite the efficient drawdown of added DIN even at the highest loadings, differences in plant biomass among the 5 treatments were difficult to detect. Enrichment at the highest loadings increased standing stocks of phytoplankton for one month mid-experiment. No significant effect of loading could be detected for dry biomass of eelgrass (Zostera marina), epiphytic material, drift macroalgae, or for all plant components combined. The experiment has demonstrated that the enrichment responses of coastal lagoons can be diverse, especially at intermediate loadings.

Keywords

Phytoplankton Macroalgae Dissolve Inorganic Nitrogen Coastal Lagoon Dissolve Inorganic Phosphorus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adey, W. H. 1978. Food production in low-nutrient seas. Bringing tropical ocean deserts to life. Bioscience 37:340–348.CrossRefGoogle Scholar
  2. Bendschneider, K. and R. J. Robinson. 1952. A new spectrophotometric determination of nitrate in seawater. Journal of Marine Research 11:87–96.Google Scholar
  3. Burdick, D. M., F. T. Short, and J. Wolf. 1994. An index to assess and monitor the progression of wasting disease in eelgrass Zostera marina. Marine Ecology Progress Series 94:83–90.CrossRefGoogle Scholar
  4. Burkholder, J. M., K. M. Mason, and H. B. Glasgow, Jr. 1992. Water column nitrate enrichment promotes decline of eelgrass Zostera marina: Evidence from seasonal mesocosm experiments. Marine Ecology Progress Series 81:163–178.CrossRefGoogle Scholar
  5. Cosper, E. M., W. C. Dennison, E. J. Carpenter, V. M. Bricelj, J. G. Mitchell, and S. H. Kuenster. 1987. Recurrent and persistent brown tide blooms perturb coastal marine ecosystem. Estuaries 10:284–290.CrossRefGoogle Scholar
  6. D'Avanzo, C., J. N. Kremer, and S. C. Wainright. 1996. Ecosystem production and respiration in response to eutrophication in shallow temperate estuaries. Marine Ecology Progress Series 141:263–274.CrossRefGoogle Scholar
  7. Dennison, W. C. and R. S. Alberte. 1982. Photosynthetic responses of Zostera marina L. (eelgrass) to in situ manipulations of light intensity. Oecologia 55:137–144.CrossRefGoogle Scholar
  8. Dennison, W. C. and R. S. Alberte. 1985. Role of daily light period in the depth distribution of Zostera marina (eelgrass). Marine Ecology Progress Series 25:51–61.CrossRefGoogle Scholar
  9. Dennison, W. C., G. J. Marshall, and C. Wigand. 1989. Effect of “brown tide” on eelgrass (Zostera marina L.) distributions, p. 675–692. In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms. Coastal and Estuarine Studies. Springer Verlag, New York.Google Scholar
  10. Drew, E. A. 1979. Physiological aspects of primary production in seagrasses. Aquatic Botany 7:139–150.CrossRefGoogle Scholar
  11. Fiore, J. and J. E. O'Brien. 1962. Ammonia determination by automatic analysis. Wastes Engineering 33:53–57.Google Scholar
  12. Fong, P., R. M. Donohoe, and J. B. Zedler. 1993. Competition with macroalgae and benthic cyanobacterial mats limits phytoplankton abundance in experimental microcosms. Marine Ecology Progress Series 100:97–102.CrossRefGoogle Scholar
  13. Harlin, M. M. and B. Thorne-Miller. 1981. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon. Marine Biology 65:221–229.CrossRefGoogle Scholar
  14. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland. 1965. Fluorometric determination of chlorophyll. Journal du Conseil 30:3–15.Google Scholar
  15. Howard-Williams, C. 1981. Studies on the ability of a Potamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. Journal of Applied Ecology 18:619–637.CrossRefGoogle Scholar
  16. Isaji, T. and M. L. Spaulding. 1981. A simplified model for assessing the impact of breachway modifications on coastal pond circulation and flushing dynamics, p. 824–828. In W. D. Thompson (ed.), Proceedings of Oceans '81. Boston, Massachusetts.Google Scholar
  17. Kjerfve, B. and K. E. McGill. 1989. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Marine Geology 88:187–199.CrossRefGoogle Scholar
  18. Lacotta, D. 1981. Two dimensional vertically averaged segment hydrodynamic model for Pt. Judith Pond, RI. M.S. Thesis, University of Rhode Island, Kingston, Rhode Island.Google Scholar
  19. Lee, V. and S. Olsen. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island Coastal lagoons. Estuaries 8:191–202.CrossRefGoogle Scholar
  20. Lin, H.-J. 1995. Responses of epiphytes on eelgrass (Zostera marina L.) to nutrient enrichment. Ph.D. Thesis, The University of Rhode Island, Kingston. Rhode Island.Google Scholar
  21. McComb, A. J. and R. Humphries. 1992. Loss of nutrients from catchments and their ecological impacts in the Peel-Harvey estuarine system. Estuaries 15:529–537.CrossRefGoogle Scholar
  22. Murphy, J. and J. Riley. 1962. A modified single solution for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36.CrossRefGoogle Scholar
  23. Neckles, H. A., R. L. Wetzel, and R. J. Orth. 1993. Relative effects of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina L.) dynamics. Oecologia 93:285–295.CrossRefGoogle Scholar
  24. Nixon, S. W. 1982. Nutrient dynamics, primary production, and fisheries yields of lagoons. Oceanologica Acta Special Edition: 357–371.Google Scholar
  25. Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C. Boicourt, W. R. Boynton, T. M. Church, D. M. DiToro, R. Elmgren, J. H. Garber, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, and S. P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 15:141–180.CrossRefGoogle Scholar
  26. Nixon, S. W., B. N. Furnas, R. Chinman, S. Granger, and S. Hefferman. 1982. Nutrient inputs to Rhode Island coastal lagoons and salt ponds. Final Report to Rhode Island Statewide Planning. University of Rhode Island, Narragansett, Rhode Island.Google Scholar
  27. Nixon, S. W., S. L. Granger, D. I. Taylor, and B. A. Buckley. 1994. Subtidal volume fluxes, nutrient inputs, and the browntide—an alternative hypothesis. Estuarine, Coastal and Shelf Science 39:303–312.CrossRefGoogle Scholar
  28. Nixon, S. W. and V. Lee. 1981. The flux of carbon, nitrogen and phosphorus between coastal lagoons and offshore waters, 33:325–348. In P. Lasserre (ed.), Coastal Lagoons, Present and Future Research. United Nations Educational, Scientific, and Cultural Organization, Technical Papers in Marine Science 33. Paris.Google Scholar
  29. Nixon, S. W., M. E. Q. Pilson, C. A. Oviatt, P. Donoghay, B. Sullivan, S. Seitzinger, D. Rudnick, and J. Frithsen. 1984. Eutrophication of a coastal marine ecosystem—An experimental study using MERL microcosms, p. 105–135. In M. J. R. Fasham (ed.), Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum Press, New York.Google Scholar
  30. Nowicki, B. L. and S. W. Nixon. 1985. Benthic nutrient remineralization in a coastal lagoon ecosystem. Estuaries 8:182–190.CrossRefGoogle Scholar
  31. Nowicki, B. L. and C. A. Oviatt. 1990. Are estuaries traps for anthropogenic nutrients? Evidence from estuarine mesocosms. Marine Ecology Progress Series 66:131–146.CrossRefGoogle Scholar
  32. Oviatt, C. A., A. A. Keller, P. A. Sampou, and L. L. Beatty. 1986. Patterns of productivity during eutrophication: A mesocosm experiment. Marine Ecology Progress Series 28:69–80.CrossRefGoogle Scholar
  33. Puccia, C. J. 1992. An approach to developing ecological models for the Lagoon of Venice, p. 209–238. In R. A. Vollenweider, R. Marchetti, and R. Viviani (eds.), Marine Coastal Eutrophication. Elsevier, Amsterdam.Google Scholar
  34. Ryther, J. H. 1954. The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, New York. Biological Bulletin 106:198–209.CrossRefGoogle Scholar
  35. Ryther, J. H. 1989. Historical perspective of phytoplankton blooms on Long Island and the green tides of the 1950's, p. 375–381. In. E. M. Cosper, V. M. Bricelj, and E. J. Carpenter, (eds.), Novel Phytoplankton Blooms. Coastal and Estuarine Studies. Springer Verlag, New York.Google Scholar
  36. Ryther, J. H. and W. M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171:1008–1013.CrossRefGoogle Scholar
  37. SAS/STAT. 1985. Guide for Personal Computers, Version 6. SAS Institute Inc., Cary, North Carolina.Google Scholar
  38. Sfriso, A., P. Pavoni, A. Marcomini, and A. A. Orio. 1992. Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice. Estuaries 15:517–528.CrossRefGoogle Scholar
  39. Short, F. T. and D. M. Burdick. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loadings in Waquoit Bay, Massachusetts. Estuaries 19:730–739.CrossRefGoogle Scholar
  40. Short, F. T., D. M. Burdick, and J. E. Kaldy, III. 1995. Mesocosm experiments quantify the effects of eutrophication of eelgrass, Zostera marina. Limnology and Oceanography 40:740–749.Google Scholar
  41. Taylor, D. I. 1983. The effects of a major macrophyte regression upon primary production in the littoral of Swartvlei. Archiv für Hyrobiologie 96:345–353.Google Scholar
  42. Taylor, D. I., S. W. Nixon, S. L. Granger, and B. A. Buckley. 1995a. Nutrient limitation and the eutrophication of coastal lagoons. Marine Ecology Progress Series 127:235–244.CrossRefGoogle Scholar
  43. Taylor, D. I., S. W. Nixon, S. L. Granger, B. A. Buckley, J. P. McMahon, and H.-J. Lin. 1995b. Responses of coastal lagoon plant communities to different forms of nutrient enrichment—A mesocosm experiment. Aquatic Botany 52:19–34.CrossRefGoogle Scholar
  44. Thorne-Miller, B., M. M. Harlin, G. B. Thursby, M. M. Brady-Campbell, and D. B. Dwortzky. 1983. Variations in the distribution and biomass of submerged macrophytes in five coastal lagoons in Rhode Island. Botanica Marina 26:231–242.CrossRefGoogle Scholar
  45. Twilley, R. R., W. M. Kemp, K. W. Staver, J. C. Stevenson, and W. R. Boynton. 1985. Nutrient enrichment of estuarine submerged vascular plant communities. I. Algal growth and effects on production of plants and associated communities. Marine Ecology Progress Series 23:179–191.CrossRefGoogle Scholar
  46. Valiela, I. and J. E. Costa. 1988. Eutrophication of Buttermilk Bay, a Cape Cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets. Environmental Management 12:539–553.CrossRefGoogle Scholar
  47. Valiela, I., K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. DeMeo-Anderson, C. D'Avanzo, M. Babione, C.-H. Sham, J. Brawley, and K. Lajtha. 1992. Couplings of watersheds and coastal waters: Sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts, Estuaries 15:443–457.CrossRefGoogle Scholar
  48. Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecological consequences. Limnology and Oceanography 42:1105–1118.CrossRefGoogle Scholar

Source of Unpublished Material

  1. Lee, V. personal communication. Coastal Resources Center, Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882-1197.Google Scholar

Copyright information

© Estuarine Research Federation 1999

Authors and Affiliations

  • D. I. Taylor
    • 1
    Email author
  • S. W. Nixon
    • 1
  • S. L. Granger
    • 1
  • B. A. Buckley
    • 1
  1. 1.Graduate School of OceanographyThe University of Rhode IslandNarragansett

Personalised recommendations