Skip to main content
Log in

Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

To characterize the isotopic composition of organisms at the base of the food web and the controls on their variability, the concentration and δ13C isotopic composition of dissolved inorganic carbon (DIC) and plankton δ13C, δ15N, and δ34S were measured. The measurements were made during periods of high and low river flow in Apalachicola Bay, Florida, United States, over 3 yr. DIC concentration and δ13C values were related to salinity, indicating that conservative mixing of riverine and marine waters was responsible for the overall distributions. The usefulness of DIC δ13C data for characterizing the trophic processes within the estuary was dependent upon the residence time of water within the season. Plankton δ13C values varied from −22‰ to −30‰ and were directly related to estuarine DIC δ13C, offset by a factor of roughly −20‰. This offset factor varied with salinity. Values of δ34S in estuarine plankton (station means ranged from 11.4‰ to 13.1‰) were depleted relative to marine plankton (17.7±0.4‰) possibly due to the admixture of34S-depleted sedimentary sulfide with estuarine samples. Values of δ34S in plankton were not related to δ13C values of plankton and were only weakly correlated to the salinity of the water from which the plankton were collected, indicating that marine sulfate was the primary source of planktonic sulfur. Values of δ15N in plankton varied from 5.5‰ to 10.7‰ and appeared related to dominance of the sample by phytoplankton or zooplankton. Estuarine plankton was15N enriched relative to offshore plankton and estuarine sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bidigare, R. R., A. Fluegge, K. H. Freeman, K. L. Hanson, J. M. Hayes, D. Hollander, J. P. Jasper, L. L. King, E. A. Laws, J. M. Milder, F. J. Millero, R. Pancost, B. N. Popp, P. A. Steinberg, andS. G. Wakeham. 1997. Consistent fractionation of13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae.Global Biogeochemical Cycles 11: 279–292.

    Article  CAS  Google Scholar 

  • Bunn, S. E., N. R. Loneragan, andM. A. Kempster. 1995. Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes.Limnology and Oceanography 40:622–625.

    Article  CAS  Google Scholar 

  • Chanton, J. P., C. S. Martens, andM. B. Goldhaber. 1987. Biogeochemical cycling in an organic-rich coastal marine basin: 7. Sulfur mass balance, oxygen uptake and sulfide retention.Geochimica et Cosmochimica Acta 51:1187–1199.

    Article  CAS  Google Scholar 

  • Cifuentes, L. A., J. H. Sharp, andM. Fogel. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary.Limnology and Oceanography 33:1102–1115.

    Article  CAS  Google Scholar 

  • Coffin, R. B., L. A. Cifuentes, andP. M. Elderidge. 1994. The use of stable carbon isotopes to study microbial processes in estuaries, p. 222–240.In K. Lajtha and R. Michener (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, London.

    Google Scholar 

  • Coplen, T. B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances.Pure Applied Chemistry 66:273–276.

    Article  CAS  Google Scholar 

  • Degens, E. T., M. Behrendt, B. Fotthardt, andE. Reppmann. 1968. Metabolic fractionation of carbon isotopes in marine plankton: II. Data on samples collected off the coasts of Peru and Ecuador.Deep Sea Research 15:11–20.

    CAS  Google Scholar 

  • Elder, J. F. and D. J. Cairns. 1982. Production and decomposition of forest litter fall on the Apalachicola River flood plain, Florida. United States Geological Survey Water-Supply Paper 2196-B. Alexandria, Virginia.

  • Estabrook, R. H. 1973. Phytoplankton ecology and hydrography of Apalachicola Bay. M.S. Thesis, Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Fogel, M. L. andL. A. Cifuentes. 1993. Isotopic fractionation during primary production, p. 73–98.In M. Engel and S. A. Macko (eds.), Organic Geochemistry. Plenum Press, New York.

    Google Scholar 

  • Fogel, M. L., L. A. Cifuentes, D. J. Velinski, andJ. H. Sharp. 1992. The relationship of carbon availability in estuarine phytoplankton in isotopic composition.Marine Ecology Progress Series 82:291–300.

    Article  CAS  Google Scholar 

  • Freeman, K. H. andJ. M. Hayes. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels.Global Biogeochemical Cycles 6:185–198.

    Article  CAS  Google Scholar 

  • Fry, B. 1988. Food web structure on Georges Bank from stable C, N, and S isotopic compositions.Limnology and Ocenography 33:1182–1189.

    CAS  Google Scholar 

  • Fry, B. andS. C. Wainright. 1991. Diatom sources of15C-rich carbon in marine food webs.Marine Ecology Progress Series 75: 149–157.

    Article  Google Scholar 

  • Fu, J. 1991. Atmospheric deposition of nutrients to North Florida rivers: A multivariate statistical analysis. M.S. Thesis, Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Goericke, R. andB. Fry. 1994. Variations of marine plankton δ13C with latitude, temperature and dissolved CO2 in the world’s ocean.Global Biogeochemical Cycles 8:85–90.

    Article  CAS  Google Scholar 

  • Goericke, R., J. P. Montoya, andB. Fry. 1994. Physiology of isotopic fractionation in algae and cyanobacteria, p. 187–221.In K. Lajtha and R. Michener (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, London.

    Google Scholar 

  • Goering, J., B. Alexander, andN. Haubenstock. 1990. Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a N. Pacific bay.Estuarine, Coastal and Shelf Science 30:239–260.

    Article  CAS  Google Scholar 

  • Hinga, K. R., M. A. Arthur, M. E. Q. Pilson, andD. Whitaker. 1994. Carbon isotope fractionation by marine phytoplankton in culture: The effects of CO2 concentration, pH, temperature, and species.Global Biogeochemical Cycles 8:91–102.

    Article  CAS  Google Scholar 

  • Laws, E. A., B. Popp, R. Bidigare, M. Kennicutt, andS. Macko. 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and CO2aq: Theoretical considerations and experimental results.Geochimica et Cosmochimica Acta 59:1131–1138.

    Article  CAS  Google Scholar 

  • Leboulanger, C., C. Descolas-Gros, M. R. Fontugue, I. Bentaleb, andH. Jupin. 1995. Interspecific variability and environmental influence on particulate organic carbon δ13C in cultured marine phytoplankton.Journal of Plankton Research 17:2079–2091.

    Article  Google Scholar 

  • Livingston, R. J. 1984. The Ecology of the Apalachicola Bay system: An estuarine profile. United States Department of the Interior, United States Fish and Wildlife Service, FWS/OBS-82/05, Washington, D.C.

  • Lynch-Stieglitz, J., T. F. Stocker, W. Broecker, andR. Fairbanks. 1995. The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling.Global Biogeochemical Cycles 9:653–665.

    Article  CAS  Google Scholar 

  • Mattraw, Jr., H. C. and J. F. Elder. 1984. Nutrient and detritus transport in the Apalachicola River, Florida. United States Geological Survey Water-Supply Paper 2196-C. Alexandria, Virginia.

  • Michener, R. H. andD. M. Schell. 1994. Stable isotope ratios as tracers in marine aquatic food webs, p. 138–157.In K. Lajtha and R. Michener (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, London.

    Google Scholar 

  • Minagawa, M. andE. Wada. 1984. Stepwise enrichment of15N along food chains: Further evidence and the relation between δ15N and animal age.Geochimica et Cosmochimica Acta 48:1135–1140.

    Article  CAS  Google Scholar 

  • Mook, W. G., J. C. Bommerson, andW. H. Staverman. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide.Earth and Planetary Science Letters 22:169–176.

    Article  CAS  Google Scholar 

  • Mook, W. G. andF. C. Tan. 1991. Stable carbon isotopes in rivers and estuaries, p. 245–264.In E. T. Degens, S. Kempe, and J. E. Richey (eds.), Biogeochemistry of Major World Rivers. SCOPE Report 42. SCOPE, New York.

    Google Scholar 

  • Peterson, B. J., R. W. Howarth, andR. H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow.Ecology 67:865–874.

    Article  CAS  Google Scholar 

  • Rau, G. H., U. Reibesell, andD. Wolf-Gladrow. 1997. CO2 aq-dependent photosynthetic13C fractionation in the ocean: A model versus measurements.Global Biogeochemical Cycles 11: 267–278.

    Article  CAS  Google Scholar 

  • Rau, G. H., T. Takahashi, andD. J. Des Marais. 1989. Latitudinal variations in plankton δ13C: Implications for CO2 and productivity in past oceans.Nature 341:516–518.

    Article  CAS  Google Scholar 

  • Smith, S. V. andJ. T. Hollibaugh. 1993. Coastal metabolism and the oceanic organic carbon balance.Reviews of Geophysics 31:75–89.

    Article  Google Scholar 

  • Spiker, E. 1980. The behavior of14C and13C in estuarine water: Effects of in situ CO2 production and atmospheric exchange.Radiocarbon 22:647–654.

    CAS  Google Scholar 

  • Spiker, E. C. andL. E. Schemel. 1979. Distribution and stable isotope composition of carbon in San Francisco Bay, p. 195–212.In T. J. Conomos (ed.), San Francisco Bay, the Urbanized Estuary. American Association for the Advancement of Science. San Francisco.

    Google Scholar 

  • Stumm, W. andJ. Morgan. 1996. Aquatic Chemistry, 3rd edition. Wiley Interscience, New York.

    Google Scholar 

  • Sullivan, M. J. andC. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 62:149–159.

    Article  Google Scholar 

  • Sullivan, M. J. andC. A. Moncreiff. 1993. Trophic importance of epiphytic algae in Mississippi seagrass beds. Document # MASGP 92-018. Mississippi-Alabama Sea Grant, Mississippi.

    Google Scholar 

  • Wilbur, D. H. 1992. Associations between freshwater inflows and oyster productivity in Apalachicola Bay, Florida.Estuarine, Coastal and Shelf Science 35:179–190.

    Article  Google Scholar 

  • Wilbur, D. H. 1994. The influence of Apalachicola River flows on blue crab,Callinectes sapidus, in north Florida.Fishery Bulletin 92:180–188.

    Google Scholar 

  • Yoshinari, T. andI. Koike. 1994. The use of stable isotopes for the study of gaseous nitrogen species in marine environments, p. 114–137.In K. Lajtha and R. Michener (eds.), Stable Isotopes in Ecology and Environmental Science, Blackwell Scientific Publications, London.

    Google Scholar 

Sources of Unpublished Materials

  • Cifuentes, L. A., P. M. Eldridge, and R. B. Coffin. Unpublished Data. Department of Oceanography, Texas A&M University, College Station, Texas.

  • Edmiston, L. and G. Bailey. Personal Communication. Apalachicola National Estuarine Research Reserve, East Point, Florida.

  • Iverson, R. L., B. Mortazavi, W. Huang, and F. G. Lewis. Unpublished Data. Department of Oceanography, Florida State University, Tallahassee, Florida.

  • Mortazavi, B. and R. Iverson. Personal Communication. Department of Oceanography, Florida State University, Tallahassee, Florida.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. Chanton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanton, J.P., Lewis, F.G. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22, 575–583 (1999). https://doi.org/10.2307/1353045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353045

Keywords

Navigation