Estuaries

, Volume 17, Issue 4, pp 886–899 | Cite as

A preliminary mass balance model of primary productivity and dissolved oxygen in the Mississippi River Plume/Inner Gulf Shelf Region

  • Victor J. Bierman
  • Scott C. Hinz
  • Dong-Wei Zhu
  • William J. Wiseman
  • Nancy N. Rabalais
  • R. Eugene Turner
Article

Abstract

A deterministic, mass balance model for phytoplankton, nutrients, and dissolved oxygen was applied to the Mississippi River Plume/Inner Gulf Shelf (MRP/IGS) region. The model was calibrated to a comprehensive set of field data collected during July 1990 at over 200 sampling stations in the northern Gulf of Mexico. The spatial domain of the model is represented by a three-dimensional, 21-segment water-column grid extending from the Mississippi River Delta west to the Louisiana-Texas border, and from the shoreline seaward to the 30–60 m bathymetric contours. Diagnostic analyses and numerical experiments were conducted with the calibrated model to better understand the environmental processes controlling primary productivity and dissolved oxygen dynamics in the MRP/IGS region. Underwater light attenuation appears relatively more important than nutrient limitation in controlling rates of primary productivity. Chemical-biological processes appear relatively more important than advective-dispersive transport processes in controlling bottom-water dissolved oxygen dynamics. Oxidation of carbonaceous material in the water column, phytoplankton respiration, and sediment oxygen demand all appear to contribute significantly to total oxygen depletion rates in bottom waters. The estimated contribution of sediment oxygen demand to total oxygen-depletion rates in bottom waters ranges from 22% to 30%. Primary productivity appears to be an important source of dissolved oxygen to bottom waters in the region of the Atchafalaya River discharge and further west along the Louisiana Inner Shelf. Dissolved oxygen concentrations appear very sensitive to changes in underwater light attenuation due to strong coupling between dissolved oxygen and primary productivity in bottom waters. The Louisiana Inner Shelf in the area of the Atchafalaya River discharge and further west to the Texas border appears to be characterized by significantly different light attenuation-depth-primary productivity relationships than the area immediately west of the Mississippi Delta. Nutrient remineralization in the water column appears to contribute significantly to maintaining chlorophyll concentrations on the Louisiana Inner Shelf.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ambrose, R. B., Jr.,T. A. Wool, J. P. Connolly, andR. W. Schanz. 1988. WASP4, A Hydrodynamic and Water Quality Model—Model Theory, User’s Manual, and Programmer's Guide. United States Environmental Protection Agency, Environmental Research Laboratory, Athens, Georgia. EPA/600/3-87/039.Google Scholar
  2. Ammerman, J. W. 1992. Seasonal variation in phosphate turnover in the Mississippi River plume and the inner Gulf Shelf: Rapid summer turnover, p. 69–75.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  3. Benner, R., G. Chin-Leo, W. Gardner, B. Eadie, andJ. Cotner. 1992. The fates and effects of riverine and shelf-derived DOM on Mississippi River plume/Gulf shelf processes, p. 84–94.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea-Grant Program, Texas A&M University, Galverson, Texas.Google Scholar
  4. Bierman, V. J., Jr.,S. C. Hinz, W. J. Wiseman, Jr.,N. N. Rabalais, andR. E. Turner. 1992. Mass balance modeling of water quality constituents in the Mississippi River plume/inner Gulf shelf region, p. 27–36.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  5. Bowie, G. L., W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan, andS. A. Gherini. 1985. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling (Second Edition). United States Environmental Protection Agency, Environmental Research Laboratory, Athens, Georgia, EPA/600/3-85/040.Google Scholar
  6. Cerco, C. F. andT. Cole. 1993. Three-dimensional eutrophication model of Chesapeake Bay.Journal of Environmental Engineering 119:1006–1025.CrossRefGoogle Scholar
  7. Cochrane, J. D. andF. J. Kelly. 1986. Low-frequency circulation on the Texas-Louisiana continental shelf.Journal of Geophysical Research 91:10,645–10,659.CrossRefGoogle Scholar
  8. Dinnel, S. P. andW. J. Wiseman, Jr. 1986. Freshwater on the Louisiana and Texas shelf.Continental Shelf Research 6:765–784.CrossRefGoogle Scholar
  9. DiToro, D. M. andW. F. Matystik, Jr. 1979. Phosphorus recycle and chlorophyll in the Great Lakes.Journal of Great Lakes Research 5:233–245.Google Scholar
  10. DiToro, D. M., N. A. Thomas, C. E. Herdendorf, R. P. Winfield, andJ. P. Connolly. 1987. A post-audit of a Lake Erie eutrophication model.Journal of Great Lakes Research 13:801–825.Google Scholar
  11. Dortch, Q., A. Bode, andR. R. Twilley. 1992a. Nitrogen uptake and regeneration in surface waters of the Louisiana continental shelf influenced by the Mississippi River, p. 52–56.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  12. Dortch, Q., C. Pham, N. N. Rabalais, andR. E. Turner. 1992b. Respiration rates in bottom waters of the Louisiana shelf, p. 140–144.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  13. Fahnenstiel, G. L., M. H. Marcovitz, M. J. McCormick, D. G. Redalje, S. E. Lohrenz, H. J. Carrick, andM. J. Dagg. 1992. High growth and microzooplankton-grazing loss rates for phytoplankton populations from the Mississippi River plume region, p. 111–116.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  14. Fasham, M. J. R., H. W. Ducklow, andS. M. McKelvie. 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer.Journal of Marine Research 48:591–639.Google Scholar
  15. Hendee, J. C. 1994. Data management for the nutrient enhanced coastal ocean productivity program.Estuaries 17:900–903.CrossRefGoogle Scholar
  16. Hoffman, E. E.. 1988. Plankton dynamics on the outer southeastern U.S. continental shelf. Part III: A coupled physical-biological model.Journal of Marine Research 46:919–946.CrossRefGoogle Scholar
  17. Jorgensen, S. E., S. N. Nielsen, andL. A. Jorgensen. 1991. Handbook of Ecological Parameters and Ecotoxicology. Elsevier, New York.Google Scholar
  18. Justic, D., N. N. Rabalais, R. E. Turner, andW. J. Wiseman, Jr. 1993. Seasonal coupling between riverborne nutrients, net productivity, and hypoxia.Marine Pollution Bulletin 26:184–189.CrossRefGoogle Scholar
  19. Kemp, W. M., P. A. Sampou, J. Garber, J. Tuttle, andW. R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planktonic respiration and physical exchange processes.Marine Ecology Progress Series 85:137–152.CrossRefGoogle Scholar
  20. Kremer, J. N. andS. W. Nixon. 1978. A Coastal Marine Ecosystem—Simulation and Analysis. Ecological Studies, Volume 24. Springer-Verlag, Berlin.Google Scholar
  21. Lohrenz, S. E., D. G. Redalje, G. L. Fahnenstiel, andG. A. Lang. 1992. Regulation and distribution of primary production in the northern Gulf of Mexico, p. 95–104.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109. Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  22. Lopez-Veneroni, D. andL. A. Cifuentes. 1992. Dissolved organic nitrogen distribution and transport in the continental shelf of the northwest Gulf of Mexico, p. 57–68.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  23. O'Connor, D. J. 1981. Modeling of eutrophication in estuaries, p. 183–223.In B. J. Neilson and L. E. Cronin (eds.), Estuaries and Nutrients. The Humana Press, Clifton, New Jersey.Google Scholar
  24. O'Connor, D. J., J. L. Mancini, and J. R. Guerriero. 1981. Evaluation of factors influencing the temporal variation of dissolved oxygen in the New York Bight. Report to MESA New York Bight Project, National Oceanic and Atmospheric Administration.Google Scholar
  25. Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development and significance.Science 223:22–27.CrossRefGoogle Scholar
  26. Rabalais, N. N., R. E. Turner, W. J. Wiseman, Jr., and D. F. Boesch. 1991. A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985–1988, p. 35–47.In R. V. Tyson and T. H. Pearson (eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society Special Publication No. 58. London.Google Scholar
  27. Rabalais, N. N., R. E. Turner, andW. J. Wiseman, Jr. 1992. Distribution and characteristics of hypoxia on the Louisiana shelf in 1990 and 1991, p. 15–20.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  28. Redalje, D. G., S. E. Lohrenz, andG. L. Fahnenstiel. 1992. The relationship between primary production and the export of POM from the photic zone in the Mississippi River Plume and inner Gulf of Mexico shelf regions, p. 105–110.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  29. Rodgers, P. W. andD. K. Salisbury. 1981. Water quality modeling of Lake Michigan and consideration of the anomalous ice cover of 1976–1977.Journal of Great Lakes Research 7:467–480.CrossRefGoogle Scholar
  30. Rowe, G. T., G. S. Boland, andW. C. Phoel. 1992. Benthic community oxygen demand and nutrient regeneration in sediments near the Mississippi River Plume, p. 136–139.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  31. Stanley, D. W. andS. W. Nixon. 1992. Stratification and bottom-water hypoxia in the Pamlico River Estuary.Estuaries 15:270–281.CrossRefGoogle Scholar
  32. Stoddard, A. andJ. J. Walsh. 1988. Modeling oxygen depletion in the New York Bight: The water quality impact of a potential increase of waste inputs, p. 91–102.In D. A. Wolfe and T. P. O'Connor (eds.), Oceanic Processes in Marine Pollution, Volume 5—Urban Wastes in Coastal Marine Environments. Krieger, Malabar, Florida.Google Scholar
  33. Swanson, R. L. andC. J. Sindermann (eds.). 1979. Oxygen Depletion and Associated Benthic Mortalities in New York Bight, 1976. NOAA Professional Paper 11, National Oceanic and Atmospheric Administration, Rockville, Maryland.Google Scholar
  34. Thomann, R. V. andJ. A. Mueller. 1987. Principles of Surface Water. Quality Modeling and Control. Harper and Row Publishers, New York.Google Scholar
  35. Turner, R. E., W. W. Schroeder, andW. J. Wiseman, Jr. 1987. The role of stratification in the deoxygenation of Mobile Bay and adjacent shelf bottom waters.Estuaries 10:13–19.CrossRefGoogle Scholar
  36. Turner, R. E. andN. N. Rabalais. 1991. Changes in Mississippi River water quality this century—Implications for coastal food webs.BioScience 41:140–147.CrossRefGoogle Scholar
  37. United States Geological Survey. 1991. Water Resources Data for Louisiana, Water Year 1990. Water Data Report LA-90-1. United States Geological Survey, Baton Rouge, Louisiana.Google Scholar
  38. Wiseman, W. J., Jr.,S. P. Murray, J. M. Bane, andM. W. Tubman. 1982. Temperature and salinity variability within the Louisiana Bight.Contributions in Marine Science 25:109–120.Google Scholar

Copyright information

© Estuarine Research Federation 1994

Authors and Affiliations

  • Victor J. Bierman
    • 1
  • Scott C. Hinz
    • 2
  • Dong-Wei Zhu
    • 2
  • William J. Wiseman
    • 3
  • Nancy N. Rabalais
    • 4
  • R. Eugene Turner
    • 4
  1. 1.Limno-Tech, Inc.South Bend
  2. 2.Limno-Tech, Inc.Ann Arbor
  3. 3.Coastal Studies Institute and Department of Oceanography and Coastal SciencesLouisiana State UniversityBaton Rouge
  4. 4.Louisiana Universities Marine ConsortiumChauvin

Personalised recommendations