Skip to main content

Differential effects of salinity and soil saturation on native and exotic plants of a coastal salt marsh

Abstract

In many southern California salt marshes, increased freshwater inflows have promoted the establishment of exotic plant species. A comparative study showed that a native, perennial, high marsh dominant,Salicornia subterminalis, and an invasive, exotic annual grass,Polypogon monspeliensis, responded differently to soil salinity and saturation.Salicornia subterminalis seeds and young plants were more salt tolerant, and the native grew best at high salinities (23 g 1−1 and 34 g 1−1) in greenhouse experiments. In contrast, the exotic had reduced growth at high salinities relative to nonsaline controls. The native,S. subterminalis, grew poorly as the duration of soil saturation increased from 2 wk to 32 wk, butP. monspeliensis grew equally well for all durations tested. The response ofS. subterminalis andP. monspeliensis to increased salinity indicated that salt applications might be used to protect native vegetation in salt marshes where salt-sensitive exotics are a problem. A field experiment verified that a salt application of 850 g m−2 mo−1 for 3 mo was sufficient to control the exotic, while not noticeably affecting the native. Thus, salt applications may be a practical method for controllingP. monspeliensis invasions in areas receiving urban runoff or other unwanted freshwater inflows.

This is a preview of subscription content, access via your institution.

Literature Cited

  • Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Ayers, A. D. 1951. Seed germination as effected by soil moisture and salinity.Agronomy Journal 44:82–84.

    Google Scholar 

  • Beare, P. A. andJ. B. Zedler. 1987. Cattail invasion and persistence in a coastal salt marsh: The role of salinity reduction.Estuaries 10:165–170.

    Article  Google Scholar 

  • Bertness, M. D. 1991. Interspecific interactions among high marsh perennials in a New England salt marsh.Ecology 72: 125–137.

    Article  Google Scholar 

  • Bertness, M. D. andA. M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community.Ecological Monographs 57:129–147.

    Article  Google Scholar 

  • Bohra, J. S. andK. Doerffling. 1993. Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity.Plant and Soil 152:299–303.

    Article  Google Scholar 

  • Boland, J. M. 1994. The experimental addition of salt to control salt marsh weeds at Los Peñasquitos Lagoon, Appendix 2.In D. R. Gibson, G. D. Williams, and J. M. Boland (eds.), The Physical, Chemical and Biological Monitoring of Los Peñasquitos Lagoon; 1993–1994. Final report prepared for the Los Peñasquitos Lagoon Foundation. Carlsbad, California.

  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soils.Agronomy Journal 54:464–465.

    Google Scholar 

  • Broome, S. W., I. A. Mendelssohn, andK. L. McKee. 1995. Relative growth ofSpartina patens (AIT.) Muhl. andScirpus olneyi Gray occurring in a mixed stand as affected by salinity and flooding depth.Wetlands 15:20–30.

    Google Scholar 

  • Callaway, R. M. 1994. Facilitative and interfering effects ofArthrocnemum subterminale on winter annuals.Ecology 75:681–686.

    Article  Google Scholar 

  • Callaway, R. M., S. Jones, W. R. Ferren, Jr., andA. Parikh. 1990. Ecology of a Mediterranean-climate estuarine wetland at Carpinteria, California: Plant distributions and soil salinity in the upper marsh.Canadian Journal of Botany 69:1139–1146.

    Google Scholar 

  • Chapman, V. J. 1960. Salt Marshes and Salt Deserts of the World. Interscience Publishers Inc., New York.

    Google Scholar 

  • Clapham, A. R., T. G. Tutin, andE. F. Warburg. 1962. Flora of the British Isles. Cambridge University Press. Cambridge, England.

    Google Scholar 

  • Davis, F. W., P. A. Stine, D. M. Stoms, M. I. Borchert, andA. D. Hollander. 1995. Gap analysis of the actual vegetation of California 1. The southwestern region.Madroño 42:40–78.

    Google Scholar 

  • Ferren, W. R., Jr., P. L. Fiedler, and R. A. Leidy. 1994. Wetlands of the central and southern California coast and coastal watersheds: A methodology for their classification and description. Draft report prepared for The United States Environmental Protection Agency, Region IX. San Francisco, California.

  • Hickman, J. C. (ed.) 1993. The Jepson Manual: Higher Plants of California. University of California Press, Los Angeles, California.

    Google Scholar 

  • Hinde, H. P. 1954. The vertical distribution of salt marsh phanerograms in relation to tide levels.Ecological Monographs 24: 209–225.

    Article  Google Scholar 

  • Jeschke, W. D., O. Wolf, andW. Hartung. 1992. Effect of NaCl salinity on flows and partitioning of C, N, and mineral ions in whole plants of white lupine,Lupinus albus L.Journal of Experimental Botany 43:777–788.

    Article  CAS  Google Scholar 

  • John, C. D., V. Limpinuntana, andH. Greenway. 1977. Interaction of salinity and anaerobiosis in barley and rice.Journal of Experimental Botany 28:133–141.

    Article  CAS  Google Scholar 

  • Josselyn, M. N., S. P. Faulkner, andW. H. Patrick, Jr. 1990. Relationships between seasonally wet soils and occurrence of wetland plants in California.Wetlands 10:7–26.

    Article  Google Scholar 

  • Kuhn, N. L. 1995. The effects of salinity and soil saturation on plants in the high intertidal marsh. M.S. Thesis. San Diego State University, San Diego, California.

    Google Scholar 

  • Los Huertos, M. W. 1992. Controls on patterns of seasonal wetland vegetation, south San Francisco Bay. M.A. Thesis, San Francisco State University, San Francisco, California.

    Google Scholar 

  • Macdonald, K. B. 1977. Coastal salt marsh, p. 263–294.In M. G. Barbour and J. Major (eds.), Terrestrial Vegetation of California. John Wiley & Sons, New York.

    Google Scholar 

  • Macdonald, K. B. andM. G. Barbour. 1974. Beach and salt marsh vegetation of the North American Pacific coast, p. 175–234.In R. J. Reimold and W. H. Queen (eds.), Ecology of Halophytes. Academic Press, New York.

    Google Scholar 

  • Mahall, B. E. andR. B. Park. 1976a. The ecotone betweenSpartina foliosa Trin. andSalicornia virginica L. in salt marshes of northern San Francisco Bay. II. Soil water and salinity.Journal of Ecology 64:793–809.

    Article  Google Scholar 

  • Mahall, B. E. andR. B. Park. 1976b. The ecotone betweenSpartina foliosa Trin. andSalicornia virginica L. in salt marshes of northern San Francisco Bay. III. Soil aeration and tidal immersion.Journal of Ecology 64:811–819.

    Article  Google Scholar 

  • McIntyre, M. B. 1977. The biotic and physical effects of trampling salt marsh (Salicornia virginica L.). M.S. Thesis. San Diego State University, San Diego, California.

    Google Scholar 

  • Mesléard, F., L. T. Ham, V. Boy, C. van Wijck, andP. Grillas. 1993. Competition between an introduced and an indigenous species: The case ofPaspalum paspalodes (Michx) Schribner andAeluropus littoralis (Gouan) in the Camargue (southern France).Oecologia 94:204–209.

    Article  Google Scholar 

  • Mitsch, W. J. andJ. G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Munz, P. A. 1974. A Flora of Southern California. University of California Press, Los Angeles, California.

    Google Scholar 

  • National Oceanic and Atmospheric Administration. 1994. Tide tables 1994 high and low water predictions, West coast of North and South America, including the Hawaiian Islands. United States Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Washington, D.C..

    Google Scholar 

  • Nyden, B. andJ. B. Zedler. 1993. Ecosystem responses to changes in tidal and sewage flows into Tijuana Estuary. NOAA Technical Memorandum under contract number NA17OR0291-01. National Oceanic and Atmospheric Administration, National Ocean Service, Office of Ocean and Coastal Resource Management, Sanctuaries and Reserves Division. Washington, D.C.

    Google Scholar 

  • Oertli, J. J. 1968. Extracellular salt accumulation, a possible mechanism of salt injury in plants.Agrochimica 12:461–469.

    Google Scholar 

  • Parsons, L. S..1994. Re-establishment of salt marsh bird’s beak at Sweetwater Marsh: Factors affecting reproductive success. M.S. Thesis. San Diego State University, San Diego, California.

    Google Scholar 

  • Pearson, J. andD. C. Havill. 1988. The effect of hypoxia and sulfide on culture-grown wetland and non-wetland plants. I. Growth and nutrient uptake.Journal of Experimental Botany 39: 363–374.

    Article  CAS  Google Scholar 

  • Pacific Estuarine Research Laboratory. 1994. Sweetwater Marsh wetland complex ecosystem assessment. Annual report to the California Department of Transportation. Caltrans District II. San Diego, California.

  • Pennings, S. C. andR. M. Callaway. 1992. Salt marsh plant zonation: The relative importance of competition and physical factors.Ecology 73:681–690.

    Article  Google Scholar 

  • Pezeshki, S. R., R. D. DeLaune, andW. H. Patrick, Jr. 1987. Response ofSpartina patens to increasing levels of salinity in rapidly subsiding marshes of the Mississippi River deltaic plain.Estuarine, Coastal and Shelf Science 24:389–399.

    Article  CAS  Google Scholar 

  • Pryde, P. R. 1992. San Diego: An Introduction to the Region. Kendall Hunt Publishing, Dubuque, Iowa.

    Google Scholar 

  • Purer, E. A. 1942. Plant ecology of the coastal salt marshlands of San Diego County California.Ecological Monographs 12:81–111.

    Article  Google Scholar 

  • Ranwell, D. S. 1972. Ecology of Salt Marshes and Sand Dunes. Chapman and Hall Ltd, London, England.

    Google Scholar 

  • Raven, P. H., R. F. Evert, andS. E. Eichhorn. 1986. Biology of Plants. Worth Publishers, Inc. New York.

    Google Scholar 

  • Reed, P. B., Jr. 1988. National list of plant species that occur in wetlands: California (Region 0). United States Fish and Wildlife Service Biological Report 88 (26.10).

  • Richards, L. A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agricultural Handbook, No. 60. United States Department of Agriculture, Washington D. C.

    Google Scholar 

  • Salim, M. 1989. Effects of salinity and relative humidity on growth and ionic relations of plants.New Phytologist 113:13–20.

    Article  Google Scholar 

  • Seamans, P. 1988. Wastewater creates a border problem.Journal of the Water Pollution Control Federation 60:1798–1804.

    Google Scholar 

  • Uhvits, R. 1946. Effect of osmotic pressure on water absorption and germination of alfalfa seed.American Journal of Botany 33:278–285.

    Article  CAS  Google Scholar 

  • Ungar, I. A. 1962. Influence of salinity on seed germination in succulent halophytes.Ecology 43:763–764.

    Article  Google Scholar 

  • Waisel, Y. 1972. Biology of Halophytes. Academic Press, New York.

    Google Scholar 

  • Yeo, A. R., K. S. Lee, P. Izard, P. J. Boursier, andT. J. Flowers. 1991. Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.).Journal of Experimental Botany 42:881–889.

    Article  CAS  Google Scholar 

  • Zar, J. H. 1984. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Zedler, J. B. 1977. Salt marsh community structure in the Tijuana Estuary, California.Estuarine and Coastal Marine Science 5:39–53.

    Article  Google Scholar 

  • Zedler, J. B. 1982. The ecology of Southern California coastal salt marshes: A community profile. United States Fish and Wildlife Service FWS/OBS-81/54.

  • Zedler, J. B. 1983. Freshwater impacts in normally hypersaline marshes.Estuaries 6:346–355.

    Article  Google Scholar 

  • Zedler, J. B. 1992. Invasive exotic plants: Threats to coastal biodiversity, p. 49–62.In Proceedings, Marine Environment of Southern California Symposium, Southern California Academy of Sciences University of Southern California. USC Sea Grant, Los Angeles, California.

    Google Scholar 

  • Zedler, J. B. 1993. Canopy architecture of natural and planted cordgrass marshes: Selecting habitat evaluation criteria.Ecological Applications 3:123–138.

    Article  Google Scholar 

  • Zedler, J. B. andP. A. Beare. 1986. Temporal variability of saltmarsh vegetation: The role of low-salinity gaps and environmental stress, p. 295–306.In D. Wolfe (ed.), Estuarine Variability. Academic Press, New York.

    Google Scholar 

  • Zedler, J. B., C. S. Nordby, andT. Griswold. 1990. Linkages: Among estuarine habitats and with the watershed. NOAA Technical Memorandum under contract number NA89AA-D-CZ043. National Oceanic and Atmospheric Administration, National Ocean Service, Office of Ocean and Coastal Resource Management, Marine and Estuarine Management Division. Washington, D.C.

    Google Scholar 

  • Zedler, J. B., C. S. Nordby, andB. E. Kus. 1992. The ecology of Tijuana Estuary, California: A National Estuarine Research Reserve. National Oceanic and Atmospheric Administration Office of Coastal Resource Management, Sanctuaries and Reserves Division, Washington, D.C.

    Google Scholar 

  • Zedler, J. B., T. Winfield, andP. Williams. 1980. Salt marsh productivity with natural and altered tidal circulation.Oecologia 44:236–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy B. Zedler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuhn, N.L., Zedler, J.B. Differential effects of salinity and soil saturation on native and exotic plants of a coastal salt marsh. Estuaries 20, 391–403 (1997). https://doi.org/10.2307/1352352

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352352

Keywords

  • Salt Marsh
  • Soil Salinity
  • Soil Saturation
  • Belowground Biomass
  • High Marsh