Skip to main content
Log in

The respiratory physiology of anadromous vertebrates: A comparison of blood gas transport in lampreys and salmonids

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Much of our understanding of the respiratory physiology of lower vertebrates has been derived from studies of salmonids. With regard to blood gas transport, investigators recently have documented a number of important features that may be helpful to the animal under stressful conditions. Several studies examining the respiratory physiology of agnathans have also revealed that striking differences in the strategy of blood gas transport may exist among the lower vertebrates inhabiting the estuary. This paper describes the characteristics of blood gas transport in both salmonids and lampreys and attempts to compare the respiratory strategy of each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bauer, C. 1974. On the respiratory function of hemoglobin.Reviews of Physiology, Biochemistry, Pharmacology 70:1–31.

    Article  CAS  Google Scholar 

  • Berg, T. andJ. B. Steen. 1968. The mechanism of oxygen concentration in the swim bladder of the eel.Journal of Physiology (London) 195:631–638.

    CAS  Google Scholar 

  • Bourne, P. K. andA. R. Cossins. 1984. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.Journal of Physiology 347:361–375.

    CAS  Google Scholar 

  • Cossins, A. R. 1989. Intracellular pH regulation by fish red cells.Nature 340:20–21.

    Article  CAS  Google Scholar 

  • Cossins, A. R. andP. A. Richardson. 1985. Adrenalin-induced Na+/H+ exchange in trout erythrocytes and its effect upon oxygen-carrying capacity.Journal of Experimental Biology 118: 229–246.

    CAS  Google Scholar 

  • Cossins, A. R. andR. V. Kilbey. 1989. The seasonal modulation of Na+/H+ exchanger activity in trout erythrocytes.Journal of Experimental Biology 144:463–478.

    Google Scholar 

  • Cossins, A. R. andR. V. Kilbey. 1990. The temperature dependence of the adrenergic Na+/H+ exchanger of trout erythrocytes.Journal of Experimental Biology 148:303–312.

    CAS  Google Scholar 

  • Ellory, J. C., M. W. Wolowyk andJ. D. Young. 1987. Hagfish (Eptatretus stouti) erythrocytes show minimal chloride transport activity.Journal of Experimental Biology 129:377–383.

    CAS  Google Scholar 

  • Ferguson, R. A., N. Sehdev, B. Bagatto andB. L. Tufts. 1992. In vitro interactions between oxygen and carbon dioxide transport in the blood of the sea lamprey,Petromyzon marinus.Journal of Experimental Biology 173:25–41.

    CAS  Google Scholar 

  • Hardisty, M. W. 1979. Biology of the Cyclostomes. University Press, Cambridge, United Kingdom 428 p.

    Google Scholar 

  • Heisler, N. 1986. Buffering and transmembrane ion transfer processes, p. 3–47In N. Heisler (ed.), Acid-Base Regulation in Animals. Elsevier, Amsterdam.

    Google Scholar 

  • Heming, T. A. 1984. The role of fish erythrocytes in transport and excretion of carbon dioxide. Ph.D. Thesis, University of British Columbia, Vancouver, B. C. 177 p.

    Google Scholar 

  • Heming, T. A., D. J. Randall, R. G. Boutilier, G. K. Iwama, andD. Primmett. 1986. Ionic equilibria in red blood cells of rainbow trout (Salmo gairdneri): Cl, HCO3 , H+.Respiration Physiology 65:223–234.

    Article  CAS  Google Scholar 

  • Henry, R. P., B. L. Tufts andR. G. Boutilier. 1993. The distribution of carbonic anhydrase type I and type II isozymes in lamprey and trout: Possible co-evolution with erythrocyte chloride/bicarbonate exchange.Journal of Comparative Physiology B 163:380–388.

    Article  CAS  Google Scholar 

  • Hoffman, E. K. andO. Simonsen. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells.Physiological Reviews 69:315–382.

    Google Scholar 

  • Lapennas, G. N. 1983. The magnitude of the Bohr coefficient: Optimal for oxygen delivery.Respiration Physiology 54:161–172.

    Article  CAS  Google Scholar 

  • Milligan, C. I. andC. M. Wood. 1986. Intracellular and extracellular acid-base status and H+ exchange with the environment after exhaustive exercise in the rainbow trout.Journal of Experimental Biology 123:93–121.

    CAS  Google Scholar 

  • Milligan, C. L., M. S. Graham andA. P. Farrell. 1989. The response of trout red cells to adrenaline during seasonal acclimation and changes in temperature.Journal of Fish Biology 35:229–236.

    Article  CAS  Google Scholar 

  • Nikinmaa, M. 1982. Effects of adrenaline on the red cell volume and concentration gradient of protons across the red cell membrane in the rainbow trout,Salmo gairdneri.Molecular Physiology 2:287–297.

    CAS  Google Scholar 

  • Nikinmaa, M. 1983. Adrenergic regulation of hemoglobin oxygen affinity in rainbow trout red cells.Journal of Comparative Physiology 152B:67–72.

    Google Scholar 

  • Nikinmaa, M. 1986a. Control of red cell pH in teleost fishes.Annales Zoologici Fennici 23:223–235.

    Google Scholar 

  • Nikinmaa, M. 1986b. Red cell pH of lamprey (Lampetra fluviatilis) red blood cells is actively regulated.Journal of Comparative Physiology 156B:747–750.

    Google Scholar 

  • Nikinmaa, M. 1990. Vertebrate Red Blood Cells. Springer-Verlag, Berlin. 262 p.

    Google Scholar 

  • Nikinmaa, M. andR. E. Weber. 1984. Hypoxic acclimation in the lamprey,Lampetra fluviatilis. Organismic and erythrocytic responses.Journal of Experimental Biology 109:109–119.

    Google Scholar 

  • Nikinmaa, M. andF. B. Jensen. 1986. Blood oxygen transport and acid-base status of stressed trout (Salmo gairdneri): Pre-and postbranchial values in winter fish.Comparative Biochemistry and Physiology 84A:391–396.

    Google Scholar 

  • Nikinmaa, M., T. Kunnamo-Ojala andR. E. Railo. 1986. Mechanisms of pH regulation in lamprey (Lampetra fluviatilis) red blood cells.Journal of Experimental Biology 122:355–367.

    CAS  Google Scholar 

  • Nikinmaa, M. andR. E. Railo. 1987. Anion movements across lamprey (Lampetra fluviatilis) red cell membrane.Biochimica et Biophysica Acta 899:134–136.

    Article  CAS  Google Scholar 

  • Nikinmaa, M. andB. L. Tufts. 1989. Regulation of acid and ion transfer across the membrane of nucleated erythrocytes.Canadian Journal of Zoology 67:3039–3045.

    CAS  Google Scholar 

  • Nikinmaa, M. andL. Matsoff. 1992. Effects of oxygen saturation on the CO2 transport properties ofLampetra red cells.Respiration Physiology 87:219–230.

    Article  CAS  Google Scholar 

  • Perry, S. F., P. S. Davie, C. Daxboeck andD. J. Randall. 1982. A comparison of CO2 excretion in a spontaneously ventilating blood-perfused trout preparation and saline-perfused gill preparations: Contribution of the branchial epithelium and red blood cell.Journal of Experimental Biology 101:47–60.

    Google Scholar 

  • Perry, S. F., C. M. Wood, S. Thomas andP. J. Walsh. 1991. Adrenergic inhibition of carbon dioxide excretion by trout red blood cells in vitro is mediated by activation of Na+/H+ exchange.Journal of Experimental Physiology 157:367–380.

    CAS  Google Scholar 

  • Primmett, D. R. N., D. J. Randall, M. Mazeaud andR. G. Boutilier. 1986. The role of catecholamines in erythrocyte pH regulation and oxygen transport in rainbow trout (Salmo gairdneri) during exercise.Journal of Experimental Biology 123: 139–148.

    Google Scholar 

  • Randall, D. J., D. Mense andR. G. Boutilier. 1987. The effects of burst swimming on aerobic swimming in Chinook salmon (Oncorhynchus tshawytscha).Marine Behavior and Physiology 13:77–88.

    Google Scholar 

  • Riggs, A. 1972. The haemoglobins, p. 209–252.In M. W. Hardisty and I. C. Potter (eds.), The Biology of Lampreys, Vol. 2. Academic Press, London.

    Google Scholar 

  • Romano, L. andH. Passow. 1984. Characterization of anion transport system in trout red blood cell.American Journal of Physiology 246:C330-C338.

    CAS  Google Scholar 

  • Root, R. 1931. The respiratory function of the blood of marine fishes.Biological Bulletin (Woods Hole, Massachusetts) 61:427–457.

    Article  CAS  Google Scholar 

  • Roughton, F. J. W. 1964. Transport of oxygen and carbon dioxide, p. 767–825.In W. O. Fenn and H. Rahn (eds.), Handbook of Physiology, Vol. 1. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Steffensen, J. F., B. L. Tufts andD. J. Randall. 1987. Effect of burst swimming and adrenaline infusion on O2 consumption and CO2 excretion in rainbow trout,Salmo gairdneri.Journal of Experimental Biology 131:427–434.

    CAS  Google Scholar 

  • Swenson, E. R. 1990. Kinetics of oxygen and carbon dioxide exchange, p. 163–210.In R. G. Boutilier (ed.), Comparative and Environmental Physiology. Springer-Verlag, New York.

    Google Scholar 

  • Tufts, B. L. 1991. Acid-base regulation and blood gas transport following exhaustive exercise in an agnathan, the sea lamprey,Petromyzon marinus.Journal of Experimental Biology 159:371–385.

    CAS  Google Scholar 

  • Tufts, B. L. 1992. Sodium-dependent pH regulation in sea lamprey (Petromyzon marinus) red blood cells.Canadian Journal of Zoology 70:411–416.

    Article  CAS  Google Scholar 

  • Tufts, B. L., B. Bagatto andB. Cameron. 1992. In vivo analysis of gas transport in arterial and venous blood of the sea lamprey,Petromyzon marinus.Journal of Experimental Biology 169: 105–119.

    Google Scholar 

  • Tufts, B. L. andR. G. Boutilier. 1989. The absence of rapid chloride/bicarbonate exchange in lamprey erythrocytes: Implications for CO2 transport and ion distributions between plasma and erythrocytes in the blood ofPetromyzon marinus.Journal of Experimental Biology 144:565–576.

    Google Scholar 

  • Tufts, B. L. andR. G. Boutilier. 1990. CO2 transport in agnathan blood: Evidence of erythrocyte Cl/HCO3 exchange limitations.Respiration Physiology 80:335–348.

    Article  CAS  Google Scholar 

  • Tufts, B. L. andR. G. Boutilier. 1991. Interactions between ion exchange and metabolism in erythrocytes of the rainbow trout,Oncorhynchus mykiss.Journal of Experimental Biology 156: 139–151.

    CAS  Google Scholar 

  • Tufts, B. L., R. A. Ferguson andR. G. Boutilier. 1988. In vivo and in vitro effects of adrenergic stimulation on chloride/bicarbonate exchange in rainbow trout erythrocytes.Journal of Experimental Biology 140:301–312.

    Google Scholar 

  • Tufts, B. L. andD. J. Randall. 1989. The functional significance of adrenergic pH regulation in fish erythrocytes.Canadian Journal of Zoology 67:235–238.

    Article  Google Scholar 

  • Tufts, B. L., Y. Tang, K. Tufts andR. G. Boutilier. 1991. Exhaustive exercise in “wild” Atlantic salmon (Salmo salar): Acid-base regulation and blood gas transport.Canadian Journal of Fisheries and Aquatic Sciences 48:868–874.

    Article  Google Scholar 

  • Wittenberg, J. B. andB. A. Wittenberg. 1974. The choroid rete marabile of the fish eye. I. Oxygen secretion and structure: Comparison with the swim bladder, rete mirabile.Biological Bulletin (Woods Hole, Massachusetts) 146:116–136.

    Article  CAS  Google Scholar 

  • Wood, C. M. andS. F. Perry. 1985. Respiratory, circulatory, and metabolic adjustments to exercise in fish, p. 2–22.In R. Gilles (ed.), Circulation, Respiration, Metabolism. Springer-Verlag, Berlin.

    Google Scholar 

  • Wood, C. M. andS. F. Perry. 1991. A new in vitro assay for carbon dioxide excretion by trout red blood cells: Effects of catecholamines.Journal of Experimental Biology 157:349–366.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tufts, B.L. The respiratory physiology of anadromous vertebrates: A comparison of blood gas transport in lampreys and salmonids. Estuaries 17, 3–12 (1994). https://doi.org/10.2307/1352330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352330

Keywords

Navigation