Skip to main content

Advertisement

Log in

Effects of zooplankton grazing on phytoplankton size-structure and biomass in the lower Hudson River estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The impact of mesozooplankton (>210 μm, mostly adult copepods and late-stage copepodites) and micrometazoa (64–210 μm, mostly copepod nauplii) on phytoplankton size structure and biomass in the lower Hudson River estuary was investigated using various14C-labeled algal species as tracers of grazing on natural phytoplankton. During spring and summer, zooplankton grazing pressure, defined as %=mg C ingested m−2 h−1/mg C produced m−2 h−1 (depth-integrated rates)×100, on total phytoplankton ranged between 0.04% and 1.9% for mesozooplankton and 0.1% and 6.6% for micrometazoa. The greatest grazing impact was measured in fall when 20.2% and 44.6%, respectively, of the total depth-integrated primary production from surface water phytoplankton was grazed. Mesozooplankton exhibited some size-selective grazing on phytoplankton, preferentially grazing the diatomThalassiosira pseudonana over the larger diatomDitylum brightwelli, but this was not found for micrometazoa. Neither zooplankton group grazed on the dinoflagellateAmphidinium sp. We conclude that metazoan zooplankton have a minimal role in controlling total phytoplankton biomass in the lower Hudson River estuary. Differences in the growth coefficients of various phytoplankton size-fractions—not grazing selectivity—may be the predominant factor explaining community size-structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allan, J. D., S. Richman, D. R. Heinle, andR. Huff. 1977. Grazing in juvenile stages of some estuarine calanoid copepods.Marine Biology 43:317–331.

    Article  Google Scholar 

  • Bellantoni, D. C. andW. T. Peterson. 1987. Temporal variability in egg production rates ofAcartia tonsa Dana in Long Island Sound.Journal Experimental Marine Biology and Ecology 107:199–208.

    Article  Google Scholar 

  • Berquist, A. M., S. R. Carpenter, andJ. C. Latino. 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages.Limnology and Oceanography 30:1037–1045.

    Google Scholar 

  • Capriulo, G. M. andE. J. Carpenter. 1980. Grazing by 35 to 202 μm microzooplankton in Long Island Sound.Marine Biology 56:319–326.

    Article  Google Scholar 

  • Chervin, M. B. 1978. Assimilation of particulate organic carbon by estuarine and coastal copepods.Marine Biology 49:265–275.

    Article  Google Scholar 

  • Chervin, M. B., T. C. Malone, andP. J. Neale. 1981. Interactions between suspended organic matter and copepod grazing in the plume of the Hudson River.Estuarine, Coastal and Shelf Science 13:169–183.

    Article  CAS  Google Scholar 

  • Conover, S. A. M. 1956. Oceanography of Long Island Sound, 1952–1954. IV. Phytoplankton.Bulletin of the Bingham Oceanographic Collection 15:62–112.

    Google Scholar 

  • Cosper, E. M., B. J. Snyder, L. M. Arnold, L. A. Zaikowski, andC. F. Wurster. 1987. Induced resistance to polychlornated biphenyls confers cross-resistance and altered environmental fitness in a marine diatom.Marine Environmental Research 23: 207–222.

    Article  CAS  Google Scholar 

  • Dagg, M. 1977. Some effects of patchy food environments on copepods.Limnology and Oceanography 22:99–107.

    Google Scholar 

  • Dam, H. B. 1986. Short-term feeding ofTemora longicornis Muller in the laboratory and the field.Journal of Experimental Marine Biology and Ecology 99:149–161.

    Article  Google Scholar 

  • Daro, H. M. 1978. A simplified14C method for grazing measurements on natural planktonic populations.Helgolander Wissenschaftliche Meeresunters 31:241–248.

    Article  Google Scholar 

  • Durbin, E. G., A. G. Durbin, andR. G. Campbell. 1992. Body size and egg production in the marine copepodAcartia hudsonica during a winter-spring diatom bloom in Narragansett Bay.Limnology and Oceanography 37:342–360.

    Article  Google Scholar 

  • Durbin, E. G., A. G. Durbin, T. J. Smayda, andP. G. Verity. 1983. Food limitation of production by adultAcartia tonsa in Narragansett Bay, Rhode Island.Limnology and Oceanography 28:1199–1213.

    Google Scholar 

  • Findlay, S., M. L. Pace, D. Lints, J. J. Cole, N. F. Caraco, andB. Peierls. 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary.Limnology and Oceanography 36:268–278.

    Google Scholar 

  • Frost, B. W. 1980. Grazing, p. 465–491.In I. Morris (ed.), The Physiological Ecology of Phytoplankton. Blackwell Scientific, Cambridge, Massachusetts.

    Google Scholar 

  • Gallager, S. M., D. K. Stoecker, andV. M. Bricelj. 1989. Effects of the brown tide alga on growth, feeding physiology and locomotory behavior of scallop larvae (Argopecten irradians), p. 511–541.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Volume 35. Springer-Verlag, Berlin.

    Google Scholar 

  • Gifford, D. J. andM. J. Dagg. 1991. The microzooplankton-mesozooplankton link: Consumption of planktonic protozoa by the calanoid copepodsAcartia tonsa Dana andNeocalanus plumchrus Murukawa.Marine Microbial Food Webs 5:161–177.

    Google Scholar 

  • Guillard, R. R. L. andJ. H. Ryther. 1962. Studies of marine planktonic diatoms. I.Cyclotella nana Hustedt, andDetonula confervacea (Cleve) Gran.Canadian Journal of Microbiology 8: 229–239.

    CAS  Google Scholar 

  • Haney, J. F. 1971. An in situ method for the measurement of zooplankton grazing rates.Limnology and Oceanography 16: 970–977.

    Google Scholar 

  • Houde, S. E. L. andM. R. Roman. 1987. Effects of food quality on the functional ingestion response of the copepodAcartia tonsa.Marine Ecology Progress Series 40:69–77.

    Article  Google Scholar 

  • Huntley, M. E. 1982. Yellow water in La Jolla Bay, California, July 1980. II. Suppression of zooplankton grazing.Journal of Experimental Marine Biology and Ecology 64:81–91.

    Article  Google Scholar 

  • Huntley, M. E. andM. P. G. Lopez. 1992. Temperature-dependent production of marine copepods: A global synthesis.American Naturalist 140:201–242.

    Article  CAS  Google Scholar 

  • Jonasdottir, S. H. 1992. Chemical composition of food and the reproductive success of the copepodsAcartia tonsa, Acartia hudsonica andTemora longicornis. Ph.D. Dissertation, State University of New York at Stony Brook, New York.

    Google Scholar 

  • Jonasdottir, S. H. 1994. Effects of food quality on the reproductive success ofAcartia tonsa andAcartia hudsonica: Laboratory observations.Marine Biology 121, Part 1:67–81.

    Article  Google Scholar 

  • Kerfoot, W. C., C. Levitan, andW. R. DeMott. 1988.Daphnia-phytoplankton interactions: Density-dependent shifts in resource quality.Ecology 69:1806–1825.

    Article  Google Scholar 

  • Kim, W.-S. 1993. Zooplankton community effects on the phytoplankton community in Long Island bays. Ph.D. Dissertation, State University of New York at Stony Brook, New York.

    Google Scholar 

  • Kiorboe, T., F. Mohlenber, andK. Hamburger. 1985. Bioenergetics of the planktonic copepodAcartia tonsa: Relation between feeding, egg production and respiration, and composition of specific dynamic action.Marine Ecology Progress Series 26:85–97.

    Article  Google Scholar 

  • Kleppel, G. S. 1992. Environmental regulation of feeding and egg production byAcartia tonsa off southern California.Marine Biology 112:57–65.

    Article  Google Scholar 

  • Kleppel, G. S. 1993. On the diets of calanoid copepods.Marine Ecology Progress Series 99:183–195.

    Article  Google Scholar 

  • Kleppel, G. S., D. V. Holliday, andR. E. Peiper. 1991. Trophic interactions between copepods and microplankton: A question about the role of diatoms.Limnology and Oceanography 36: 172–178.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rae, andB. E. Taylor. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase.Limnology and Oceanography 31: 478–490.

    Google Scholar 

  • Lampert, W. andB. E. Taylor. 1985. Zooplankton grazing in a eutrophic lake: Implications of diel vertical migration.Ecology 66:68–82.

    Article  Google Scholar 

  • Lonsdale, D. J., E. H. Cooper, W.-S. Kim, M. Doall, A. Dioadeenam, andS. H. Jonasdottir. 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects.Marine Ecology Progress Series 134: 247–263.

    Article  Google Scholar 

  • Lonsdale, D. J. and E. M. Cosper. 1994. Phytoplankton productivity and zooplankton feeding and productivity in the lower Hudson River estuary. Final Report to the Hudson River Foundation, New York.

  • Lonsdale, D. J. andB. C. Coull. 1977. Composition and seasonality of zooplankton of North Inlet, South Carolina.Chesapeake Science 18:272–283.

    Article  Google Scholar 

  • Lynch, M. 1978. Complex interactions between natural coexploiters—Daphnia andCeriodaphnia.Ecology 59:552–564.

    Article  Google Scholar 

  • Malej, A. andR. P. Harris. 1993. Inhibition of copepod grazing by diatom exudates: A factor in the development of mucus aggregates.Marine Ecology Progress Series 96:33–42.

    Article  Google Scholar 

  • Malone, T. C. 1977. Environmental regulation of phytoplankton productivity in the lower Hudson estuary.Estuarine, Coastal and Shelf Science 5:151–171.

    Google Scholar 

  • Malone, T. C., C. Garside, andP. Neale. 1980b. Effects of silicate depletion on photosynthesis by diatoms in the plume of the Hudson River.Marine Biology 58:197–204.

    Article  CAS  Google Scholar 

  • Malone, T. C., P. J. Neale, andD. Boardman. 1980a. Influences of estuarine circulation on the distribution and biomass of phytoplankton size fractions, p. 249–262.In V. S. Kennedy (ed.), Estuarine Perspectives. Academic Press, New York.

    Google Scholar 

  • Omori, M. andT. Ikeda. 1984. Methods in Marine Zooplankton Ecology. Wiley, New York.

    Google Scholar 

  • Perissinotto, R. 1992. Mesozooplankton size-selectivity and grazing impact on the phytoplankton community of the Prince Edward Archipelago (Southern Ocean).Marine Ecology Progress Series 79:243–258.

    Article  Google Scholar 

  • Pierce, R. W. andJ. T. Turner. 1992. Ecology of planktonic ciliates in marine food webs.Reviews in Aquatic Sciences 6:139–181.

    Google Scholar 

  • roman, M. R. and P. A. Rublee. 1981. A method to determine in situ zooplankton grazing rates on natural particle assemblages.Marine Biology 65:303–309.

    Article  Google Scholar 

  • Sokal, R. R. andF. J. Rohlf. 1981. Biometry. W. H. Freeman, San Francisco, California.

    Google Scholar 

  • Stepien, J. C., T. C. Malone, andM. B. Chervin. 1981. Copepod communities in the estuary and coastal plume of the Hudson River.Estuarine, Coastal and Shelf Science 13:185–195.

    Article  Google Scholar 

  • Stoecker, D. K. andJ. M. Capuzzo. 1990. Predation on protozoa: Its importance to zooplankton.Journal of Plankton Research 12:891–908.

    Article  Google Scholar 

  • Strathmann, R. R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume.Limnology and Oceanography 12:411–418.

    CAS  Google Scholar 

  • Strickland, J. D. and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis.Bulletin of the Fisheries Research Board of Canada. Bulletin 167.

  • Tackx, M. L. M. andM. H. Daro. 1993. Influence of size dependant14C uptake rates by phytoplankton cells in zooplankton grazing measurements.Cahiers de Biologie Marine 34:253–260.

    Google Scholar 

  • Tantichodok, P. 1990. Relative importance of phytoplankton and organic detritus as food resources for the suspension-feeding bivalveMytilus edulis L. in Long Island Sound. Ph.D. Dissertation, State University of New York at Stony Brook, New York.

    Google Scholar 

  • Tester, P. A. andJ. D. Turner. 1990. How long does it take copepods to make eggs?Journal of Experimental Marine Biology and Ecology 141:169–182.

    Article  Google Scholar 

  • Tester, P. A. and J. D. Turner. 1991. Why isAcartia tonsa restricted to estuarine habitats?, p. 603–611.In Proceedings of the Fourth International Conference on Copepoda, Karuizawa, Japan.Bulletin of the Plankton Society of Japan Special Vol. Higashi-Hiroshima, Japan.

  • Tilman, D. 1976. Ecological competition between planktonic algae: An experimental and theoretical approach.Ecology 58: 338–348.

    Article  Google Scholar 

  • Tilman, D., M. Mattson, andS. Langer. 1981. Competition and nutrient kinetics along a temperature gradient: An experimental test of a mechanistic approach to niche theory.Limnology and Oceanography 26:1020–1033.

    Google Scholar 

  • Turner, J. T. 1982. The annual cycle of zooplankton in a Long Island Estuary.Estuaries 4:261–274.

    Article  Google Scholar 

  • Turner, J. T. 1984. Zooplankton feeding ecology: Contents of fecal pellets of the copepodsAcartia tonsa andLabidocera aestiva from continental shelf waters near the mouth of the Mississippi River.Pubblicaione Stazione Zoologica Napoli I.: Marine Ecology 5:265–282.

    Google Scholar 

  • White, J. R. andM. R. Roman. 1992a. Egg production by the calanoid copepodAcartia tonsa in the mesohaline Chesapeake Bay: The importance of food resources and temperature.Marine Ecology Progress Series 86:239–249.

    Article  Google Scholar 

  • White, J. R. andM. R. Roman. 1992b. Seasonal study of grazing by metazoan zooplankton in the mesohaline Chesapeake Bay.Marine Ecology Progress Series 86:251–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darcy J. Lonsdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonsdale, D.J., Cosper, E.M. & Doall, M. Effects of zooplankton grazing on phytoplankton size-structure and biomass in the lower Hudson River estuary. Estuaries 19, 874–889 (1996). https://doi.org/10.2307/1352304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352304

Keywords

Navigation