Skip to main content

Advertisement

Log in

There is no horohalinicum

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Species abundance declines to a minimum (the Artenminimum) between 5 and 8‰, not only in estuaries, but in all bodies of brackish water. Khlebovich (1968) examined published hydrochemical data for estuaries and concluded that sharp changes in the ionic composition of seawater diluted with fresh water occur at salinities below 5 to 8‰. He further argued that these ionic changes constitute a physico-chemical barrier between marine and freshwater faunas. Kinne (1971) gave the name “horohalinicum” to the segment of the salinity gradient between 8 and 5‰. We have re-examined the data used by Khlebovich (1968) and found that, in fact, while the ionic composition of diluted seawater changesslightly between 8 and 5‰, the changes in ionic ratios below 2‰ are much larger. Thus, the proposed physico-chemical barrier does not exist between 8 and 5‰; it cannot then explain the Artenminimum; and there is no basis for the horohalinicum concept of Kinne (1971). Two ecological explanations for the occurrence of the Artenminimum—a species-area effect and the stability-time hypothesis—are discussed and found to be inconsistent with published data on species distributions in brackish waters. The low species diversity of brackish water may be explained, in part, by two factors: few animals evolve those physiological mechanisms required for life in the variable habitat; and these species, which are very eurytopic, have low rates of speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abele, L. G., andK. Walters. 1979a. Marine benthic diversity: a critique and alternate explanation.J. Biogeogr. 6:115–126.

    Article  Google Scholar 

  • Abele, L. G., andK. Walters. 1979b. The stability-time hypothesis: reevaluation of the data.Am. Nat. 114:559–568.

    Article  Google Scholar 

  • Adamstone, F. B. 1923. The distribution and economic importance of mollusca in Lake Nipigon.Univ. Toronto Stud., Biol. Ser. 22:67–119.

    Google Scholar 

  • Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic.Paleobiology 3:152–167.

    Google Scholar 

  • Barnes, R. S. K. 1974. Estuarine Biology. Edward Arnold Ltd., London, 76 p.

    Google Scholar 

  • Bassindale, R. 1943. A comparison of the varying salinity conditions of the Tees and Severn estuaries.J. Anim. Ecol. 12:1–10.

    Article  Google Scholar 

  • Boltt, G., andHeeg, J. 1975. The osmoregulatory ability of three grapsoid crab species in relation to their penetration of an estuarine system.Zool. Africana 10:167–182.

    Google Scholar 

  • Bretsky, P. W., andD. M. Lorenz. 1970. An essay on genetic-adaptive strategies and mass extinctions.Bull. Geol. Soc. Am. 81:2449–2456.

    Article  Google Scholar 

  • Brooks, J. L. 1950. Speciation in ancient lakes.Q. Rev. Biol. 25:30–60; 131–176.

    Article  Google Scholar 

  • Browne, R. A. 1981. Lakes as islands: biogeographic distribution, turnover rates, and species composition in the lakes of central New York.J. Biogeogr. 8:75–83.

    Article  Google Scholar 

  • Claus, A. 1937. Vergleichend-physiologische Untersuchungen zur Okologie der Wasserwanzen.Zool. Jahrbuch. 58:365–432.

    Google Scholar 

  • Connor, E. F., andE. D. McCoy 1979. The statistics of the species-area relationship.Am. Nat. 113: 791–833.

    Article  Google Scholar 

  • Croghan, P. C., andLockwood, A. P. M. 1968. Ionic regulation of the Baltic and fresh-water races of the isopodMesidotea (Saduria) entomon (L.).J. Exp. Biol. 48:141–158.

    Google Scholar 

  • Davis, G. M. 1979. The origin and evolution of the Pomatiopsidae, with emphasis on the Mekong River hydrobioid gastropods.Monogr. Acad. Nat. Sci. Philadelphia 20:1–120.

    Google Scholar 

  • Day, J. H. 1951. The ecology of South African estuaries, I; a review of estuarine conditions in general.Trans. R. Soc. S. Afr. 33:53–91.

    Google Scholar 

  • Deaton, L. E. 1981. Ion regulation in freshwater and brackish water bivalve mollusks.Physiol. Zool. 54: 109–121.

    CAS  Google Scholar 

  • Fryer, G., andT. D. Iles. 1972. The Cichlid Fishes of the Great Lakes of Africa: Their Biology and Evolution. Oliver and Boyd, Edinburgh, 641 p.

    Google Scholar 

  • Gainey, L. F., andM. J. Greenberg. 1977. The physiological basis of the species abundance-salinity relationship in molluscs: a speculation.Mar. Biol. 40:41–49.

    Article  CAS  Google Scholar 

  • Gooch, J. L. 1975. Mechanisms of evolution and population genetics, p. 349–409.In O. Kinne (ed.), Marine Ecology, Vol. II, Physiological Mechanisms, Part 1. John Wiley and Sons, New York.

    Google Scholar 

  • Gooch, J. L., andT. J. M. Schopf. 1972. Genetic variability in the deep sea: relation to environmental stability.Evolution 26:545–552.

    Article  Google Scholar 

  • Grassle, J. F. 1972. Species diversity, genetic variability and environmental stability, p. 19–26. Fifth European Marine Biological Symposium. Piccin Editore, Padua.

  • Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods.Paleobiology 6:193–207.

    Google Scholar 

  • Harris, R. R. 1972. Aspects of sodium regulation in a brackish water and a marine species of the isopod genusSphaeroma.Mar. Biol. 12:18–27.

    CAS  Google Scholar 

  • Heartel, L., andC. Osterberg. 1967. Ecology of zooplankton, benthos, and fishes in the Columbia River estuary.Ecology 48:459–472.

    Article  Google Scholar 

  • Hudson, J. D. 1963. The recognition of salinity controlled mollusc assemblages in the great estuarine series (Middle Jurassic) of the inner Hebrides.Paleontology 6:318–326.

    Google Scholar 

  • Jackson, J. B. C. 1974. Biogeographic consequences of eurytopy and stenotypy among marine bivalves and their evolutionary significance.Am. Nat. 108: 541–560.

    Article  Google Scholar 

  • Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous Bivalvia.Philos. Trans. R. Soc. Lond. B. Biol. Sci. 284:277–304.

    Article  Google Scholar 

  • Khlebovich, V. V. 1968. Some peculiar features of the hydrochemical regime and the fauna of mesohaline waters.Mar. Biol. 2:47–49.

    Article  Google Scholar 

  • Khlebovich, V. V. 1969. Aspects of animal evolution related to critical salinity and the internal state.Mar. Biol. 2:338–345.

    Article  CAS  Google Scholar 

  • Kinne, O. 1971. Salinity: animals—invertebrates, p. 821–996.In O. Kinne (ed.), Marine Ecology, Vol. 1, Environmental Factors, Part 2. John Wiley and Sons, New York.

    Google Scholar 

  • Kirschner, L. B. 1979. Control mechanisms in crustaceans and fishes, p. 157–222.In R. Gilles (ed.), Mechanisms of Osmoregulation in Animals. John Wiley and Sons, New York.

    Google Scholar 

  • Kirsch, M. 1956. Ionic regulation of some of the major components in river-diluted sea water in Bute and Knight inlets, British Columbia.J. Fish. Res. Board Can. 13:273–289.

    CAS  Google Scholar 

  • Knudsen, M., C. Forch, andS. P. L. Sorenson. 1902. Berichte uber die Konstantenbestimmungen zur Anfestellung der Hydrographischen Tabellen, Kgl. Danske Videnskab. Selskabs, Skifter, Naturvidenskab math, Afdel XX 1:1–151.

    Google Scholar 

  • Koch, C. F. 1980. Bivalve species duration, areal extent and population size in a Cretaceous sea.Paleobiology 6:184–192.

    Google Scholar 

  • Levinton, J. S. 1982. Marine Ecology. Prentice Hall. Englewood Cliffs, 526 p.

    Google Scholar 

  • Livingstone, D. A. 1963. Chemical Composition of Rivers and Lakes.Prof. Papers U.S. Geol. Surv. 440-G.

  • Millerio, F. J. 1978. The physical chemistry of Baltic Sea waters.Thalassia Jugosl. 14:1–46.

    Google Scholar 

  • Milne, A. 1938. The ecology of the Tamar estuary—III. Salinity and temperature conditions.J. Mar. Biol. Assoc. U.K. 22:529–542.

    Article  CAS  Google Scholar 

  • Morris, A. W., R. F. C. Mantoura, A. J. Bale, andR. J. M. Howland. 1978. Very low salinity regions of estuaries: important sites for chemical and biological reactions.Nature 274:678–680.

    Article  CAS  Google Scholar 

  • Nevo, E. 1978. Genetic variation in natural populations.Theor. Popul. Biol. 13:121–177.

    Article  CAS  Google Scholar 

  • Oglesby, L. C. 1965. Steady-state parameters of water and chloride regulation in estuarine nereid polychaetes.Comp. Biochem. Physiol. 14:621–640.

    Article  CAS  Google Scholar 

  • Oglesby, L. C. 1978. Salt and water balance, p. 555–658.In P. J. Mill (ed.), Physiology of Annelids. Academic Press, New York.

    Google Scholar 

  • Pannikkar, M. K., andR. G. Aiyar. 1937. The brackish water fauna of Madras.Proc. Ind. Acad. Sci. 6:284–337.

    Google Scholar 

  • Phillips, J. E., T. J. Bradley, andS. H. P. Maddrell. 1978. Mechanisms of ionic and osmotic regulation in saline water mosquito larvae. In: K. Schmidt-Nielson, L. Bolis, and S. H. P. Maddrell (eds.),Comparative Physiology: Water, Ions, and Fluid Mechanics. Cambridge University Press, London, pp. 151–171.

    Google Scholar 

  • Pilsbry, H. A., andJ. Bequaert. 1927. The aquatic mollusks of the Belgian Congo. With a geographical and ecological account of Congo malacology.Bull. Am. Mus. Nat. Hist. 53:69–602.

    Google Scholar 

  • Potts, W. T. W., andG. Parry. 1964. Osmotic and Ionic Regulation in Animals. Pergamon Press, Oxford.

    Google Scholar 

  • Prange, R. K. 1978. An autecological study ofBlidingia minima var.subsalsa (Chlorophyceae) in the Squamish estuary (British Columbia).Can J. Bot. 58:170–179.

    Article  Google Scholar 

  • Prosser, C. L. 1973. Water: osmotic balance; hormonal regulation, p. 1–78.In C. L. Prosser (ed.), Comparative Animal Physiology, 3rd ed. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Pytkowicz, R. M., E. Atlas, andC. H. Culberson. 1975. Chemical equilibrium in seawater, p. 1–24.In T. M. Church (ed.), Marine Chemistry in the Coastal Environment. American Chemical Society, Washington.

    Google Scholar 

  • Remane, A. 1934. Die Brackwasserfauna.Verh. Dtsch. Ges. 36:34–74.

    Google Scholar 

  • Remane, A. 1971. Ecology of brackish water, p. 1–210.In A. Remane and C. Schlieper (eds.), Biology of Brackish Water. John Wiley and Sons, New York.

    Google Scholar 

  • Sanders, H. L. 1969. Benthic marine diversity and the stability-time hypothesis.Brookhaven Symp. Biol. 22:71–81.

    CAS  Google Scholar 

  • Sanders, H. L., P. C. Mangelsdorf, andG. R. Hampson. 1965. Salinity and faunal distribution in the Pocasset River, Massachusetts.Limnol. Oceanogr. 10:R216-R228.

    Google Scholar 

  • Schlieper, C. 1971. Physiology of brackish water, p. 211–350.In A. Remane and C. Schlieper (eds.), Biology of Brackish Water. John Wiley and Sons, New York.

    Google Scholar 

  • Smith, R. I. 1967. Osmotic regulation and adaptive reduction of water permeability in a brackish-water crab,Rhithropanopeus harrisi (Brachyura, Xanthidae).Biol. Bull. 133:643–658.

    Article  Google Scholar 

  • Tenore, R. K. 1972. Macrobenthos of the Pamlico River estuary, North Carolina.Ecol. Monogr. 42: 51–69.

    Article  Google Scholar 

  • Thorman, S., andA.-M. Wiederholm. 1984. Species composition and dietary relationships in a brackish shallow water fish assemblage in the Bothnian Sea, Sweden.Estuarine Coastal Shelf Sci. 19:359–371.

    Article  Google Scholar 

  • Wittig, H. 1940. Uber die Verteilung des Kalziums und der Alkalinitat in der Ostsee.Kiel. Meeresforsch. 3:469–496.

    Google Scholar 

  • Wolff, W. J. 1973. The estuary as a habitat. An analysis of data on the soft bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt.Zool. Verh. 126:1–242.

    Google Scholar 

  • Yarish, C., andP. Edwards. 1980. The effects of salinity, and calcium and potassium variations on the growth of two estuarine red algae.J. Exp. Mar. Biol. Ecol. 47:235–249.

    Article  CAS  Google Scholar 

  • Zenkevitch, L. 1963. Biology of the Seas of the USSR. John Wiley and Sons, New York, 955 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is contribution No. 141 from the Tallahassee, Sopchoppy, and Gulf Coast Marine Biological Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deaton, L.E., Greenberg, M.J. There is no horohalinicum. Estuaries 9, 20–30 (1986). https://doi.org/10.2307/1352189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352189

Keywords

Navigation