Skip to main content

Advertisement

Log in

Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Rates of CO2 emission from bare salt-marsh sediments in areas of short and tall formSpartina alterniflora were measured monthly for 1 yr. Maximum emission rates, as high as 325 ml CO2m−2h−1, were observed during summer months, while minimum rates, 10.2 ml CO2 m−2h−1, were observed during the winter. An exponential function of inverse soil temperature explained most of the seasonal variability, but other factors are involved in regulating CO2 emissions as demonstrated by rates that were higher in spring than in late summer at equivalent temperatures. Annual CO2 emissions from bare sediments were 27.3 and 18.6 mol C m−2 yr−1 in communities of short and tallS. alterniflora, respectively. It was estimated that losses of dissolved inorganic carbon from the turnover of pore water, up to 14.6 mol C m−2 yr−1 at the creek bank (tall,S. alterniflora) site, and diffusion of CO2 from the root system ofS. alterniflora through the culms, 12.3 to 16.2 mol C m−2 yr−1, could also be important pathways of carbon loss from marsh sediments. If the internal flux of CO2 from the root system through the culm is refixed within the leaves, then the observed rate of 9.8 μI CO2 min−1 cm−2 of culm cross sectional area appears to make a small but significant contribution to total photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Blum, U., E. D. Seneca, andL. M. Stroud. 1978. Photosynthesis and respiration ofSpartina andJuncus salt marshes in North Carolina: some models.Estuaries 1:228–238.

    Article  Google Scholar 

  • Bollinger, M. S., andW. S. Moore. 1984. Radium fluxes from a salt marsh.Nature 309:444–446.

    Article  CAS  Google Scholar 

  • Chapman V. J. 1938. Studies in salt-marsh ecology.J. Ecol. 26:144–179.

    Article  Google Scholar 

  • Chrzanowski, T. H., L. H. Stevenson, andJ. D. Spurrier. 1983. Transport of dissolved organic carbon through a major creek of the North Inlet ecosystem.Mar. Ecol. Prog. Ser. 13:167–174.

    Article  CAS  Google Scholar 

  • De La Cruz, A. A. 1973. The role of tidal marshes in the productivity of coastal waters.Assoc. Southeastern Biologists Bull. 20:147–156.

    Google Scholar 

  • Drake, B. G., andM. Read. 1981. Carbon dioxide assimilation, photosynthetic efficiency, and respiration of a Chesapeake Bay salt marsh.J. Ecol. 69: 405–423.

    Article  CAS  Google Scholar 

  • Fenchel, T., andT. H. Blackburn. 1979. Bacteria and Mineral Cycling. Academic Press, New York, 225 p.

    Google Scholar 

  • Gardner, L. R. 1973. The effect of hydrologic factor on the pore water chemistry of intertidal marsh sediments.Southeat Geol. 15:17–28.

    CAS  Google Scholar 

  • Gallagher, J. L., andF. G. Plumley. 1979. Underground biomass profiles and productivity in Atlantic coastal marshes.Am. J. Bot. 66:156–161.

    Article  Google Scholar 

  • Giurgevich, J. R., andE. L. Dunn. 1982. Seasonal patterns of daily net photosynthesis, transpiration and net primary productivity ofJuncus roemerianus andSpartina alterniflora in a Georgia salt marsh.Oecologia 52:404–410.

    Article  Google Scholar 

  • Gleason, M. L., andE. L. Dunn. 1982. Effects of hypoxia on root and shoot respiration ofSpartina alterniflora, p. 243–253.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Good, R. E., N. F. Good, andB. R. Frasco. 1982. A review of primary production and decomposition dynamics of the belowground marsh component, p. 139–157.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Hackney, C. T., andA. A. De la Cruz. 1980. In situ decomposition of roots and rhizomes of two tidal marsh plants.Ecology 61:226–231.

    Article  Google Scholar 

  • Hartenstein, R. 1972. Principles of Physiology. Van Nostrand Reinhold, New York, 691 p.

    Google Scholar 

  • Higuchi, T. 1982. Gaseous CO2 transport through the aerenchyma and intercellular spaces in relation to the uptake of CO2 by rice roots.Soil Sci. Plant Nutr. 28:491–497.

    CAS  Google Scholar 

  • Higuchi, T., K. Yoda, andK. Tensho. 1984. Further evidence for gaseous CO2 transport in relation to root uptake of CO2 in rice plant.Soil Sci. Plant Nutr. 30:125–136.

    CAS  Google Scholar 

  • Houghton, R. A., andG. M. Woodwell. 1980. The Flax Pond ecosystem study: exchanges of CO2 between a salt marsh and the atmosphere.Ecology 61: 1434–1445.

    Article  Google Scholar 

  • Howes, B. L., J. W. H. Dacey, andJ. M. Teal 1985. Annual carbon mineralization and below-ground production ofSpartina alterniflora in a New England salt marsh.Ecology 66:595–605.

    Article  CAS  Google Scholar 

  • Howes, B. L., R. W. Howarth, J. M. Teal, andI. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production.Limnol. Oceanogr. 26:350–360.

    Google Scholar 

  • Kepkay, P. E., andF. O. Andersen. 1985. Aerobic and anaerobic metabolism of a sediment enriched withSpartina detritus.Mar. Ecol. Prog. Ser. 21:153–161.

    Article  CAS  Google Scholar 

  • Kjereve, B., J. E. Greer, andR. L. Crout. 1973. Low frequency response of estuarine sea level to non-local forcing p. 477–513.In M. L. Wiley (ed.), Estuarine Interactions. Academic Press, New York.

    Google Scholar 

  • Mendelssohn, I. A., andE. D. Seneca. 1980. The influence of soil drainage on the growth of salt marsh cordgrassSpartina alterniflora in North Carolina.Estuarine Coastal Mar. Sci. 11:27–40.

    Article  Google Scholar 

  • Morris, J. T., andJ. W. H. Dacey. 1984. Effects of O2 on ammonium uptake and root respiration bySpartina alterniflora.Am. J. Bot. 71:979–985.

    Article  CAS  Google Scholar 

  • Morris, J. T., andG. J. Whiting. 1985. Gas advection in sediments of a South Carolina salt marsh.Mar. Ecol. Prog. Ser. 27:187–194.

    Article  Google Scholar 

  • Nobel, P. S. 1983. Biophysical Plant Physiology and Ecology. Freeman, San Francisco, 608 p.

    Google Scholar 

  • Sas Institute Inc. 1982. SAS User’s Guide: Statistics. SAS Institute Inc., Cary, NC, 584 p.

    Google Scholar 

  • Singh, J. S., W. K. Lauenroth, H. W. Hunt, andD. M. Swift. 1984. Bias and random errors in estimators of net root production: a simulation approach.Ecology 65:1760–1764.

    Article  Google Scholar 

  • Smith, C. J., R. D. Delaune, andW. H. Patrick, Jr. 1983. Carbon dioxide emission and carbon accumulation in coastal wetlands.Estuarine Coastal Shelf Sci. 17:21–29.

    Article  CAS  Google Scholar 

  • Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia.Ecology 43:614–624.

    Article  Google Scholar 

  • Teal, J. M., andJ. Kanwisher. 1961. Gas exchange in a Georgia salt marsh.Limnol. Oceanogr. 6:388–399.

    Google Scholar 

  • Valiela, I., J. Wilson, R. Buchsbaum, C. Rietsma, D. Bryant, K. Foreman andJ. Teal. 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores.Bull. Mar. Sci. 35:261–269.

    Google Scholar 

  • Wetzel, R. G., E. S. Brammer, andC. Forsberg. 1984. Photosynthesis of submersed macrophytes in acidified lakes. I. Carbon fluxes and recycling of CO2 inJuncus bulbosus L.Aquat. Bot. 19:329–342.

    Article  Google Scholar 

  • Woodwell, G. M., D. E. Whitney, C. A. S. Hall, andR. A. Houghton. 1977. The Flax Pond ecosystem study: exchanges of carbon in water between a salt marsh and Long Island Sound.Limnol. Oceanogr. 22:833–838.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, J.T., Whiting, G.J. Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses. Estuaries 9, 9–19 (1986). https://doi.org/10.2307/1352188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352188

Keywords

Navigation