Skip to main content
Log in

Upper temperature tolerance of spot,Leiostomus xanthurus, from the cape Fear River estuary, North Carolina

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The temperature tolerance and resistance times of postlarval (<25 mm SL) and small juvenile spot,Leiostomus xanthurus, from the Cape Fear Estuary, North Carolina were tested in the laboratory. Critical thermal maximum techniques were used to determine first equilibrium loss (FEL) and critical thermal maximum (CTM) end points and thermal shock methods were used to determine 96-h upper incipient lethal temperatures (LT50). Acclimation temperatures ranged from 10 to 35°C and acclimation salinities were 10, 20 and 30‰. A quadratics model was fit to the CTM and FEL data; r2 values were 0.924 and 0.928 respectively. Acclimation salinity, estimated weight, acclimation salinity by acclimation temperature interaction and acclimation temperature by estimated weight interaction were the significant components of the CTM model. Predicted CTM values ranged from 30°C at 10 °C and 30‰ acclimation to just over 40°C at 30 °C and 30‰ acclimation.

Acclimation temperature, acclimation temperature squared, estimated weight and acclimation temperatures by estimated weight interaction were the significant components of the FEL model. Predicted FEL values ranged from around 28°C at 10°C and 10‰ acclimation to about 39°C at 30°C and 30‰ acclimation.

The 96-h LT50 values of spot acclimated to 20‰ increased linearly with acclimation temperature to 25°C. From about 25 to 35°C, LT50 values increased very little with acclimation temperature. The ultimate upper incipient lethal temperature of postlarval and small juvenile spot was estimated at 35.2°C. Increased salinity increased resistance time but decreased LT50 estimates. Thermal shock tests were better for predicting the effects of thermal addition than were CTM tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Birkhead, W. S., C. R. Bennett, E. C. Pendleton, and B. J. Copeland. 1977. Nursery Utilization of the Dutchman Creek Estuary, N.C., 1971–1976. Report to Carolina Power & Light Co., Raleigh, N.C., 258 p.

  • Brett, J. R. 1946. Rate of gain of heat tolerance in goldfish (Carassius auratus).University Toronto Stud. Biol. Ser., No. 52. (Pub. Ont. Fish. Res. Lab., No. 64), 9–28.

    Google Scholar 

  • Brett, J. R. 1952. Temperature tolerance in young Pacific Salmon, genusOncorhynchus.J. Fish. Res. Board Can. 9:265–323.

    Google Scholar 

  • Bridges, D. W. 1971. The critical thermal maximum of juvenile spotLeiostomus xanthurus Lacépède.Water Resources Res. Inst. Rep. No. 43, 39 p.

  • Coutant, C. C. 1970. Biological aspects of thermal pollution. I. Entrainment and discharge canal effects.Chem. Rubber Co. Crit. Revs. in Environmental Control 1:341–381.

    Google Scholar 

  • Coutant, C. C. 1971. Effects on organisms of entrainment in cooling water: Steps toward predictability.Nucl. Saf. 12:600–607.

    Google Scholar 

  • Copeland, B. J., R. G. Hodson, and R. J. Monroe. 1979. Larvae and post-larvae in the Cape Fear River Estuary, N.C. during operation of the Brunswick Steam Electric Plant 1974–1978. Report 79-3 to Carolina Power & Light Co., Raleigh, N.C. 203 p.

  • Cowles, R. B., andC. M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles.Bull. Am. Mus. Nat. Hist. 83:265–296.

    Google Scholar 

  • Cox, D. K. 1974. Effects of three heating rates on the critical thermal maximum of bluegill.Proc. Thermal Ecology Symp., pp. 158–163.

  • Dawson, C. E. 1958. A study of the biology and life history of the spot,Leiostomus xanthurus Lacépède, with special reference to South Carolina.Contr. Bears Bluff Lab. No. 28, 48 p.

  • Doudoroff, P. 1942. The resistance and acclimation of marine fishes to temperature changes. I. Experiments withGirella nigricans (Ayres).Biol. Bull. 83:219–244.

    Article  Google Scholar 

  • Edsall, T. A., andP. J. Colby. 1970. Temperature tolerance of young-of-the-year cisco,Coregonus artedii.Trans. Am. Fish Soc. 99:526–531.

    Article  Google Scholar 

  • Fry, F. E. J. 1947. Effects of the environment on animal activity.Univ. Toronto Stud. Biol. No. 55 (Pub. Ont. Fish Res. Lab. 68), 1–62.

    Google Scholar 

  • Fry, F. E. J., J. R. Brett, andG. H. Clawson. 1942. Lethal limits of temperature for young goldfish.Rev. Can. Biol. 1:50–56.

    Google Scholar 

  • Fry, F. E. J., J. S. Hart, andK. F. Walker. 1946. Lethal temperature relations for a sample of young speckled trout (Salvelinus fontinalis).Univ. Toronto Stud. Biol. Ser., No. 54 (Pub. Ont. Fish Res. Lab. 66), 9–35.

    Google Scholar 

  • Hartwell, S. I. 1976. The effect of cycling acclimation temperature on the thermal shock resistance of postlarval and juvenile spot,Leiostomus xanthurus Lacépède. M.S. Thesis, N.C. State Univ., Raleigh, North Carolina, 25 p.

    Google Scholar 

  • Hoar, W. S. 1956. Photoperiodism and thermal resistance of goldfish.Nature 178:364–365.

    Article  Google Scholar 

  • Hoar, W. S., andG. B. Robertson. 1959. Temperature resistance of goldfish maintained under controlled photoperiods.Can. J. Zool. 37:419–428.

    Article  Google Scholar 

  • Horton, D. B., andD. W. Bridges. 1969. Ecological systems receiving heated water, p. 1113–1147.In H. T. Odum, B. J. Copeland and E. A. McMahan (eds.), Coastal Ecological Systems of the United States, The Conservation Foundation, Washington, D.C.

    Google Scholar 

  • Hoss, D. E., L. C. Coston, andW. F. Hettler, Jr. 1971. Effects of increased temperature on postlarval and juvenile estuarine fish.Proc. SE Assoc. Game & Fish Commnrs. 25:635–642.

    Google Scholar 

  • Hoss, D. E., W. H. Hettler, Jr., andL. C. Coston. 1974. Effects of thermal shock on larval estuarine fish-ecological implications with respect to entrainment in power plant cooling systems, p. 357–371.In J. H. S. Blaxter (ed.), The Early Life History of Fish, Springer-Verlag, Berlin, Heidelberg and New York.

    Google Scholar 

  • Huntsman, A. G., andM. I. Sparks. 1924. Limiting factors for marine animals. 3. Relative resistance to high temperature.Centri. Can. Biol. N. S. 2:95–114.

    Google Scholar 

  • Hutchison, V. H. 1961. Critical thermal maximum in salamanders.Physiol. Zool. 34:92–125.

    Google Scholar 

  • Laney, R. W. 1973. A comparison of the critical thermal maxima of juvenile brown shrimp (Penaeus aztecus aztecus Ives) and white shrimp (Penaeus setiferus (Linnaeus). M.S. Thesis, N.C. State Univ., Raleigh, North Carolina, 40 p.

    Google Scholar 

  • Litchfield, J. T., Jr., andF. Wilcoxon. 1949. A simplified method of evaluating dose-effect experiments.J. Pharmacol. Exp. Ther. 95:99–113.

    Google Scholar 

  • Lowe, C. H., andV. J. Vance. 1955. Acclimation of the critical thermal maximum of the reptileUrosaurus ornatus.Science 122:73–74.

    Article  Google Scholar 

  • Mazeaud, M. M., F. Mazeaud, andE. M. Donaldson. 1977. Primary and secondary effects of stress in fish: some new data with a general review.Trans. Am. Fish Soc. 106:201–211.

    Article  CAS  Google Scholar 

  • Mihursky, J. A., andV. S. Kennedy. 1967. Water temperature criteria to protect aquatic life.Am. Fish Soc., Spec. Publ. 4:20–32.

    Google Scholar 

  • Nakano, T., andN. Tomlinson. 1967. Catecholamine and carbohydrate concentrations in rainbow trout (Salmo gairdneri) in relation to physical disturbance.J. Fish Res. Board Can. 24:1701–1715.

    CAS  Google Scholar 

  • Otto, R. G., M. A. Kitchel, andJ. O. Rice. 1976. Lethal and preferred temperature of the alewife (Alosa pseudoharengus) in Lake Michigan.Trans. Am. Fish Soc. 105:96–106.

    Article  Google Scholar 

  • Parker, J. C. 1971. The biology of the spot,Leiostomus xanthurus Lacépède, and Atlantic croaker,Micropogon undulatus (Linnaeus), in two Gulf of Mexico nursery areas. Sea Grant Publ. No. TAMU-56-71-210, 182 p.

  • Snedecor, G. W., andW. G. Cochran. 1967. Statistical Methods. Iowa State University Press, Ames, Iowa, U.S.A., 593 p.

    Google Scholar 

  • Stevens, E. D., andF. E. J. Fry. 1970. The rate of thermal exchange in a teleost,Tilapia mossambica.Can. J. Zool. 48:221–226.

    Article  CAS  Google Scholar 

  • Stevens, E. D., andF. E. J. Fry. 1974. Heat transfer and body temperature in non-thermoregulatory teleosts.Can. J. Zool. 52:1137–1143.

    Article  CAS  Google Scholar 

  • Strange, R. J., C. B. Schreck, andJ. T. Golden. 1977. Golden certicord stress response to handling and temperature in salmonids.Trans. Am. Fish Soc. 106:213–217.

    Article  CAS  Google Scholar 

  • Wedemeyer, G. 1973. Some physiological aspects of sublethal heat stress in juvenile steelhead trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch).J. Fish. Res. Board Can. 30:831–834.

    Google Scholar 

  • Weinstein, M. P. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.Fish Bull. 77:339–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodson, R.G., Fechhelm, R.G. & Monroe, R.J. Upper temperature tolerance of spot,Leiostomus xanthurus, from the cape Fear River estuary, North Carolina. Estuaries 4, 345–356 (1981). https://doi.org/10.2307/1352159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352159

Keywords

Navigation