Skip to main content
Log in

Dewatering of an unvegetated muddy tidal flat during exposure—Desiccation or drainage?

Estuaries Aims and scope Submit manuscript

Abstract

An unvegetated muddy tidal flat was sampled to determine the changes in surface pore water content and salinity during exposure. Local evaporation accounted for 61% of the upper intertidal surface salinity, with evaporation rates increasing salinity as high as 2.2‰ per hour. In contrast, only 37% of the decrease in pore water content was attributed to evaporative processes. This suggests that drainage (a combination of porosity and permeability) controlled the water content rather than local evaporative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Literature Cited

  • Anderson, F. E. 1983. The northern muddy intertidal: a seasonally changing source of suspended sediment to estuarine waters—a review.Can. J. Fish. Aquat. Sci. 40:143–159.

    Google Scholar 

  • Anderson, F. E. 1980. The variation in suspended sediment and water properties in the floodwater front traversing the tidal flat.Estuaries 3:28–37.

    Article  Google Scholar 

  • Anderson, F. E. 1979. How sedimentation patterns may be affected by extreme water temperatures on a northeastern coastal intertidal zone.Northeastern Geol. 1:122–132.

    Google Scholar 

  • Anderson, F. E. 1976. Rapid settling rates observed in sediments resuspended by boat waves over a tidal flat.Neth. J. Sea. Res. 10:44–58.

    Article  Google Scholar 

  • Anderson, F. E. 1973. Observations of some sedimentary processes acting on a tidal flat.Mar. Geol. 14:101–116.

    Article  Google Scholar 

  • Anderson, F. E. 1972. Resuspension of estuarine sediment by small amplitude waves.J. Sediment. Petrol. 42:602–607.

    Google Scholar 

  • Arulanandan, K. 1975. Fundamental aspects of erosion of cohesive soils.J. Hyd. Div. ASCE, No. Hy5, 101:635–639.

    Google Scholar 

  • Buller, A. T., andJ. McManus. 1974. Factors in-fluencing the formation of “turbidity maxima” with examples from the Tay Estuary, Scotland.Mem. Inst. Geol. Basin d. Aquitaine, 7:37–44.

    Google Scholar 

  • Capstick, C. K. 1957. The salinity characteristics of the middle and upper reaches of the River Blyth estuary.J. Anim. Ecol. 26:295–315.

    Article  Google Scholar 

  • Dietrich, G. 1963. General oceanography. John Wiley and Sons, Inc., New York, 588 p.

    Google Scholar 

  • Dixon, W. J., andF. J. Massey 1969. Introduction to Statistical Analysis. McGraw-Hill, New York, 638 p.

    Google Scholar 

  • Friedman, G. M., andJ. E. Sanders. 1978. Principles of Sedimentology. John Wiley and Sons, New York, 792 p.

    Book  Google Scholar 

  • Froomer, N. L. 1982. The influence of water salinity on paludal erosion processes.J. Geol. 90:179–185.

    Google Scholar 

  • Grissinger, E. H. 1966. Resistance of selected clay systems to erosion by water.Water Resour. Res. 2:131–138.

    Article  Google Scholar 

  • Gularte, R. C. 1978. Erosion of cohesive marine sediment as a rate process. Ph.D. Dissertation. University of Rhode Island, 190 p.

  • Norall, T. L., and A. C. Mathieson. 1976. Nutrient and hydrographic data for the Great Bay estuarine system and open coast of New Hampshire-Maine. Jackson Est. Laboratory Report (unpublished), 87 p.

  • Paaswell, R. E. 1974. Causes and mechanisms of cohesive soil erosion: the state of the art. Highway Res. Board, Spec. Rept. #135; Soil Erosion Causes and Mechanisms. Prevention and Control:52–72.

  • Partheniades, E., andR. E. Paaswel. 1970. Erodability of channels with cohesive boundry.J. Hydraulics. Div. ASCE 96, No. HY3:755–771.

    Google Scholar 

  • Postma, H. 1967. Sediment transport and sedimentation in the estuarine environment, p. 158–179.In G. H. Lauff (ed.), Estuaries. Publ, No. 83, Am. Assoc. Adv. Sci., Washington, D.C., 757 p.

    Google Scholar 

  • Raudkivi, A. J., andD. L. Hutchinson. 1974. Erosion of kaolinite of flowing water.Proc. R. Soc. Lond. 337:537–554.

    CAS  Google Scholar 

  • Rhoads, D. C., and L. F. Boyer. 1982. The effects of marine benthos on physical properties of sediments: a successional perspective, p. 3–43.In P. McCall and M. Tevesz (eds.), Animal Sediment Relations. Topics in Geobiology, v. 2, 336 p.

  • Smith, R. I. 1956. Salinity in muds of the Tamar estuary.J. Mar. Biol. Assoc. U.K. 35:81–104.

    Article  Google Scholar 

  • Sverdrup, H. U., M. W. Johnson, andR. H. Fleming. 1942. The Oceans. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1087 p.

    Google Scholar 

  • Ward, L. G. 1978. Hydrodynamics and sediment transport in a salt marsh tidal channel. Proc. 16th Int. Conf. on Coastal Engineering, Hamburg, Germany. p. 1–18.

  • Welsh, B. L. 1980. Comparative nutrient dynamics of a marsh-mudflat ecosystem.Estuarine Coastal Mar. Sci. 10:143–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, F.E., Howell, B.A. Dewatering of an unvegetated muddy tidal flat during exposure—Desiccation or drainage?. Estuaries 7, 225–232 (1984). https://doi.org/10.2307/1352142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352142

Keywords

Navigation