Skip to main content
Log in

Sediment transport, biotic modifications and selection of grain size in a surface deposit-feeder

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Deposit-feeders often select for particles on the basis of grain size. The available pool of particles at the sediment surface may be modified both by deposit-feeder activity and by sediment transport, but the effects of these alterations on deposit-feeder diet composition have received little attention. In laboratory experiments the spionid polychaeteParaprionospio pinnata altered the grain-size composition in its foraging area, and these alterations were reflected in grain-size changes in the diet. After simulated transport of fine-grain sediments,P. pinnata diets also changed in grain-size composition. Field data were collected from 9 m depth in the lower Chesapeake Bay. A video camera, deployed near the bottom, identified times of sediment transport over a 6-h Period;P. pinnata were collected concurrently for gut analysis. Consistent with predictions from the laboratory experiments,P. pinnata ingested primarily small-grain sizes. During periods of no sediment transport this feeding pattern reduced the relative availability of small particles; larger sediments were incorporated into the diet. Sediment transport may resupply the foraging area with fine-grain particles which are then incorporated into the diet. On these small spatial and time scales, deposit-feeder activity may affect the availability of food resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Cammen, L. M. 1982. Effect of particle size on organic content and microbial abundance within four marine sediments.Mar. Ecol. Prog. Ser. 9:273–280.

    Article  Google Scholar 

  • Clements, L. A. J., andS. E. Stancyk. 1984. Particle selection by the burrowing brittlestarMicrophiopholis gracillima (Stimpson) (Echinodermata: Ophiuroidea).J. Exp. Mar. Biol. Ecol. 84:1–33.

    Article  Google Scholar 

  • Dauer, D. M. 1980. Population dynamics of the polychaetous annelids of an intertidal habitat of upper Old Tampa Bay.Int. Rev. Gesamten Hydrobiol. 65:461–487.

    Article  Google Scholar 

  • Dauer, D. M. 1985. Population dynamics of the polychaetous annelids of an intertidal habitat of upper Old Tampa Bay.Int. Rev. Gesamten Hydrobiol. 65:461–487.

    Article  Google Scholar 

  • Dauer, D. M. 1985. Functional morphology and feeding behavior ofParaprionospio pinnata (Polychaeta: Spionidae).Mar. Biol. 85:143–151.

    Article  Google Scholar 

  • Dauer, D. M., C. A. Maybury, andR. M. Ewing. 1981. Feeding behavior and general ecology of several spionid polychaetes from the Chesapeake Bay.J. Exp. Mar. Biol. Ecol. 54: 39–54.

    Article  Google Scholar 

  • Dobbs, F. C., andT. A. Scholly. 1986. Sediment processing and selective feeding byPectinaria koreni (Polychaeta: Pectinariidae).Mar. Ecol. Prog. Ser. 29:165–176.

    Article  Google Scholar 

  • Grant, J. 1983. The relative magnitude of biological and physical sediment reworking in an intertidal community.J. Mar. Res. 41:673–689.

    Article  Google Scholar 

  • Greene, C. H. 1986. Patterns of prey selection: Implications of predator foraging tactics.Am. Nat. 128:824–839.

    Article  Google Scholar 

  • Guidi, L. D. 1986. The feeding response of the epibenthic amphipodSiphonoecetes dellavallei Stebbing to varying food particle sizes and concentrations.J. Exp. Mar. Biol. Ecol. 98: 51–63.

    Article  Google Scholar 

  • Heinrich, B. 1979. Resource heterogeneity and patterns of forating in bumblebees.Oecologia 40:234–245.

    Article  Google Scholar 

  • Jumars, P. A., andR. F. L. Self 1986. Gut-marker and gut-fullness methods for estimating field and laboratory effects of sediment transport on ingestion rates of deposit-feeders.J. Exp. Mar. Biol. Ecol. 98:293–310.

    Article  Google Scholar 

  • Jumars, P. A., A. R. M. Nowell, andR. F. L. Self. 1981. A simple model of flow-sediment-organism interaction.Mar. Geol. 42:155–172.

    Article  Google Scholar 

  • Jumars, P. A., R. F. L. Self, andA. R. M. Nowell. 1982. Mechanics of particle selection by tentaculate deposit-feeders.J. Exp. Mar. Biol. Ecol. 64:47–70.

    Article  Google Scholar 

  • Levin, L. A. 1981. Dispersion, feeding behavior and competition in two spionid polychaetes.J. Mar. Res. 39:99–117.

    Google Scholar 

  • Levinton, J. S. 1980. Particle feeding by deposit feeders: models, data and a prospectus, p. 423–439.In K. R. Tenore and B. C. Coull (eds.), Marine Benthic Dynamics. Univ. South Carolina Press, Columbia.

    Google Scholar 

  • Miller, D. C., andP. A. Jumars 1986. Pellet accumulation, sediment supply and crowding as determinants of surface deposit-feeding rate inPseudopolydora kempi japonica Imajima & Hartman (Polychaeta: Spionidae).J. Exp. Mar. Biol. Ecol. 99:1–17.

    Article  Google Scholar 

  • Miller, D. C., and R. W. Sternberg. In press. Field measurements of the fluid and sediment-dynamic environment of a benthic deposit feeder.J. Mar. Res.

  • Miller, D. C., P. A. Jumars, andA. R. M. Nowell 1984. Effects of sediment transport on deposit feeding: Scalling arguments.Limnol. Oceanogr. 29:1202–1217.

    Article  Google Scholar 

  • Petch, D. A. 1986. Selective deposit-feeding byLumbrineris cf.latreilli (Polychaeta: Lumbrineridae), with a new method for assessing selectivity by deposit-feeding organisms.Mar. Biol. 93:443–448.

    Article  Google Scholar 

  • Pleasants, J. M. 1981. Bumblebee response to variation in nectar availability.Ecology 62:1648–1661.

    Article  Google Scholar 

  • Pyke, G. H., H. R. Pullium, andE. L. Charnov. 1977. Optimal foraging: A selective review of theories and tests.Q. Rev. Biol. 52: 137–154.

    Article  Google Scholar 

  • Schaffner, L. C., R. J. Diaz, andR. J. Byrne. 1987. Processes affecting recent estuarine stratigraphy. Coastal Sediments '87, p. 584–599. WW Division of the American Society of Civil Engineering, New Orleans.

    Google Scholar 

  • Schoener, T. W. 1971. Theory of feeding strategies.Annu. Rev. Ecol. Syst. 2:369–404.

    Article  Google Scholar 

  • Self, R. F. L., andP. A. Jumars 1978. New resource axes for deposit feeders?J. Mar. Res. 36:627–641.

    Google Scholar 

  • Sokal, R. R., andF. J. Rohlf. 1981. Biometry, 2nd ed. W. H. Freeman, New York. 859 p.

    Google Scholar 

  • SPSS Advanced Statistics Guide. 1985. McGraw-Hill Book Company, New York.

  • Taghon, G. L. 1982 Optimal foraging by deposit-feeding invertebrates: Roles of particle size and organic coating.Oecologia 52:295–302.

    Article  Google Scholar 

  • Taghon, G. L., R. F. L. Self, andP. A. Jumars 1978. Predicting particle selection by deposit feeders: A model and its implications.Limnol. Oceanogr. 23:752–759.

    Google Scholar 

  • Whitlatch, R. B. 1980. Foraging in the deposit-feeding polychaetePectinaria gouldii: Testing the energy-optimization hypothesis.Am. Zool. 20:920.

    Google Scholar 

  • Whitlatch, R. B. andJ. R. Weinberg. 1982. Factors influencing particle selection and feeding rate in the polychaeteCistenides (Pectinaria) gouldii.Mar. Biol. 71:33–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution no. 1462 from the Virginia Institute of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luckenbach, M.W., Huggett, D.V. & Zobrist, E.C. Sediment transport, biotic modifications and selection of grain size in a surface deposit-feeder. Estuaries 11, 134–139 (1988). https://doi.org/10.2307/1352000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352000

Keywords

Navigation