Skip to main content
Log in

Live standing crop and metabolism of the marsh grassSpartina patens as related to edaphic factors in a brackish, mixed marsh community in Louisiana

Estuaries Aims and scope Submit manuscript

Abstract

Effects of soil factors on physiological indicators ofSpartina patens and live standing crop of the macrophyte community were investigated in a brackish marsh. Three distinct physiognomic zones were studied along a transect perpendicular to a tidal creek: the marsh edge, which was directly adjacent to the creek; the levee berm, 6 to 8 m from the creek; and the inland zone, which extended through the marsh interior. Soil physicochemical factors (soil moisture, redox potential, interstitial pH, salinity, and ammonium and sulfide concentrations) were compared to physiological indicators ofSpartina patens (leaf adenine nucleotides, root alcohol dehydrogenase (ADH) activity, and levels of ethanol, lactate, alanine and malate in the roots). In correlation matrices of soil and plant factors, increases in soil moisture and decreases in redox potential were associated with depressed leaf adenylate energy charge ratios (AEC, an integrative measure of plant stress) and elevated ADH activities and metabolite levels in the roots. ADH activity was greatest in roots from the inland zone where soil waterlogging was greatest and exhibited seasonal increases that followed seasonal declines in soil redox potential. Leaf AEC was greatest in the berm and generally lowest in the inland plants. End of season live standing crop was also greatest on the berm, but did not closely follow any edaphic trends across the three zones. This suggests that several factors, (i.e., soil aeration, and sulfide and nitrogen levels) may be of greater importance to standing crop than any single factor, as is thought for salt marshes dominated byS. alterniflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Literature Cited

  • Armstrong, W. 1979. Aeration in higher plants.Adv. Bot. Res. 7:225–232.

    Article  CAS  Google Scholar 

  • Atkinson, D. E.. 1971. Regulation of enzyme function.Ann. Rev. Microbiol. 23:47–68.

    Article  Google Scholar 

  • Bergmeyer, H. U. 1974. Methods of Enzymatic Analysis, 2nd Ed. Verlag Chemie Weinheim-Academic Press, New York. 2302 p.

    Google Scholar 

  • Bertani, A., andI. Brambilla. 1982. Effect of decreasing oxygen concentration on some aspects of protein and amino-acid metabolism in rice roots.Z. Pflanzenphysiol. 107:193–200.

    CAS  Google Scholar 

  • Bertani, A., I. Brambilla, andF. Menegus. 1980. Effect of anaerobiosis on rice seedlings: growth, metabolic rate, and fate of fermentation products.J. Exp. Bot. 31:325–331.

    Article  CAS  Google Scholar 

  • Burdick, D. M., andI. A. Mendelssohn. 1987. Waterlogging responses in dune, swale and marsh populations ofSpartina patens under field conditions.Oecologia 74:321–329.

    Article  Google Scholar 

  • Chabreck, R. 1972. Vegetation, water and soil characteristics of the Louisiana coastal region. LA Agric. Exp. Stat. Bull. 664, Baton Rouge, Louisiana. 72 p.

  • Crawford, R. M. M.. 1982. Physiological responses to flooding, p. 453–477.In O. L. Lange, P. F. Noble, C. B. Osmond, and H. Ziegler (es.), Encyclopedia of Plant Physiology, New Series Vol. 12 B, Physiological Plant Ecology II. Springer-Verlag, New York.

    Google Scholar 

  • Davies, D. D.. 1980. Anaerobic metabolism and the production of organic acids.Biochem. Plants 2:581–611.

    CAS  Google Scholar 

  • DeLaune, R. D., R. J. Buresh, andW. H. Patrick, Jr. 1979. Relationship of soil properties to standing crop biomass ofSpartina alterniflora in a Louisiana marsh.Estuarine Coastal Shelf Sci. 8:477–487.

    CAS  Google Scholar 

  • DeLaune, R. D., W. H. Patrick, Jr., andJ. M. Brannon. 1976. Nutrient Transformations in Louisiana Salt Marsh Soils. Center for Wetland Resources, Louisiana State University, Baton Rouge, LA. Sea Grant Publication No. LSU-T-76-009. 38 p.

    Google Scholar 

  • DeLaune, R. D., C. J. Smith, andW. H. Patrick, Jr 1983. Relationship of marsh elevation, redox potential, and sulfide toSpartina alterniflora productivity.Soil Sci. Soc. Am. J. 47:930–935.

    Article  CAS  Google Scholar 

  • DeLaune, R. D., C. J. Smith, andM. D. Tolley. 1984. The effect of sediment redox potential on nitrogen uptake, an-aerobic root respiration, and growth ofSpartina alterniflora Loisel.Aquat. Bot. 18:223–230.

    Article  Google Scholar 

  • Gallagher, J. L., andH. V. Kibby. 1981. The streamside effect in aCarex lyngbyei estuarine marsh: The possible role of recoverable underground reserves.Estuarine Coastal Shelf Sci. 12:451–460.

    Article  Google Scholar 

  • Hoffman, N. E., A. F. Bent, andA. D. Hanson. 1986. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue.Plant Physiol. 82:658–663.

    CAS  Google Scholar 

  • Howes, B. L., J. W. H. Dacey, andD. D. Goehringer. 1986. Factors controlling the growth form ofSpartina alterniflora: Feedbacks between above-ground production, sediment oxidation, nitrogen and salinity.J. Ecol. 74:881–898.

    Article  Google Scholar 

  • Howes, B. L., J. W. H. Dacey, andS. G. Wakeham. 1985. Effects of sampling technique on measurements of porewater constituents in salt marsh sediments.Limnol. Oceanogr. 30:221–226.

    CAS  Google Scholar 

  • Howes, B. L., R. W. Howarth, J. M. Teal, andI. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: Spatial pattern and interactions with primary production.Limnol. Oceanogr. 26:350–360.

    Article  Google Scholar 

  • Ingold, A., andD. C. Havill. 1984. The influence of sulfide on the distribution of higher plants in salt marshes.J. Ecol. 72:1043–1054.

    Article  CAS  Google Scholar 

  • Keeley, J. E.. 1979. Population differentiation along a flood frequency gradient: Physiological adaptations to flooding inNyssa sylavatica.Ecol. Monogr. 49:89–108.

    Article  CAS  Google Scholar 

  • King, G. M., M. J. Klug, R. G. Wiegert, andA. G. Chalmers. 1982. Relation of soil water movement and sulfide concentration toSpartina alterniflora production in a Georgia salt marsh.Science 218:61–63.

    Article  CAS  Google Scholar 

  • Koch, M. S., and I. A. Mendelssohn. In press. Sulfide as a soil phytotoxin: Differential responses in two marsh species.J. Ecol.

  • Linthurst, R. A.. 1979. The effect of aeration on the growth ofSpartina alterniflora Loise.Amer. J. Bot. 66:685–691.

    Article  CAS  Google Scholar 

  • McKee, K. L., andI. A. Mendelssohn. 1984. The influence of season on adenine nucleotide concentrations and energy charge in four marsh plant species.Physiol. Plant. 62:1–7.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A.. 1979. Nitrogen metabolism in the height forms ofSpartina alterniflora in North Carolina.Ecology: 60:574–584.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A., andK. L. McKee. 1981. Determination of adenine nucleotide levels and adenylate energy charge ratio in twoSpartina species.Aquat. Bot. 11:37–55.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A., andK. L. McKee. 1985. The effect of nutrients on adenine nucleotide levels and the adenylate energy charge ratio inSpartina alterniflora andSpartina patens.Plant Cell Environ. 8:213–218.

    CAS  Google Scholar 

  • Mendelssohn, I. A., andK. L. McKee. 1988.Spartina alterniflora die-back in Louisiana: Time course investigation of soil waterlogging effects.J. Ecol. 76:509–521.

    Article  Google Scholar 

  • Mendelssohn, I. A., andE. D. Seneca. 1980. The influence of soil drainage on the growth of salt marsh cordgrassSpartina alterniflora in North Carolina.Estuarine Coastal Mar. Sci. 11:27–40.

    Article  Google Scholar 

  • Mendelssohn, I. A., K. L. McKee, andW. H. Patrick, Jr. 1981. Oxygen deficiency inSpartina alterniflora roots: Metabolic adaptation to anoxia.Science 214:439–441.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A., K. L. McKee, andM. T. Postek. 1982. Sublethal stresses controllingSpartina alterniflora productivity, p. 223–242.In B. Gopal, R. E. Turner, R. G. Wetzel, and D. F. Whigham (eds.), Wetlands: Ecology and Management. National Institute of Ecology, Jaipur, India.

    Google Scholar 

  • Mirris, J. T.. 1984. Effects of oxygen and salinity on ammonium uptake bySpartina alterniflora Loisel. andSpartina patens (Aiton) Mulh.J. Exp. Mar. Biol. Ecol. 78:87–98.

    Article  Google Scholar 

  • Odum, E. P., andM. E. Fanning. 1973. Comparison of the productivity ofSpartina alterniflora andSpartina cynosuroides in Georgia coastal marshes.Bull. Georgia Acad. Sci. 31:1–12.

    Google Scholar 

  • Rennenberg, H.. 1984. The fate of excess sulfur in higher plants.Ann. Rev. Plant Physiol. 35:121–153.

    CAS  Google Scholar 

  • Roberts, J. K. M., J. Callis, O. Jardetzky, V. Wolbot, andM. Freeling. 1984. Cytoplasmic acidosis as a determinant of flooding intolerance.Proc. Natl. Acad. Sci. USA 81:6029–6033.

    Article  CAS  Google Scholar 

  • SASInstitute, Inc. 1985. SAS User’s Guide: Statistics, 1985 Edition. SAS Institute, Cary, North Carolina, 584 p.

    Google Scholar 

  • Smith, A. M., andT. ap Rees. 1979. Pathways of carbohydrate fermentation in the roots of marsh plants.Planta 146:327–334.

    Article  CAS  Google Scholar 

  • Swenson, E. M. 1986. Marsh Hydrologic Studies: 1982–1983 Data Report. Center for Wetland Resources, Louisiana State University, Baton Rouge, LA. LSU-CEFI-83-18. 264 p.

    Google Scholar 

  • Teal, J. M., andJ. E. Kanwisher. 1966. Gas transport in the marsh grass,Spartina alterniflora.J. Exp. Bot. 17:355–361.

    Article  CAS  Google Scholar 

  • Valiela, I., andJ. M. Teal. 1974. Nutrient limitation in salt marsh vegetation, p. 547–564.In R. J. Reimold and W. H. Queen (eds.), Ecology of Halophytes. Academic Press, New York.

    Google Scholar 

  • van Diggelen, J., J. Rozema, D. M. J. Dickson, andR. Broekman. 1986. β-3-dimethylsulphoionpropionate, proline and quaternary ammonium compounds inSpartina anglica in relation to sodium chloride, nitrogen and sulphur.New Phytol. 103:573–586.

    Article  Google Scholar 

  • Wiegert, R. G., A. G. Chalmers, andP. F. Randerson. 1983. Productivity gradients in salt marshes: The response ofSpartina alterniflora to experimentally manipulated soil water movement.Oikos 41:1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdick, D.M., Mendelssohn, I.A. & McKee, K.L. Live standing crop and metabolism of the marsh grassSpartina patens as related to edaphic factors in a brackish, mixed marsh community in Louisiana. Estuaries 12, 195–204 (1989). https://doi.org/10.2307/1351824

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1351824

Keywords

Navigation