, Volume 4, Issue 2, pp 143–145 | Cite as

Methane release from a brackish intertidal salt-marsh embayment of Chesapeake Bay, Maryland

  • Fredric Lipschultz
Short Papers and Notes


Gaseous methane loss from a brackish, intertidal salt marsh sediment was measured in April, June, August, and October 1977. Twenty-four sediment cores were taken on each date. Annual loss of methane carbon from the mud flats was 10.7 g CH4−C per m2 per year, a value closer to freshwater values than marine systems. Loss of methane fromSpartina peat was low.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Atkinson, L. P., andJ. R. Hall 1976. Methane distribution and production in a Georgia salt marsh.Estuarine Coastal Mar. Sci. 4:677–686.CrossRefGoogle Scholar
  2. Cappenburg, T. E. 1975. A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria.Microb. Ecol. 2:60–72.CrossRefGoogle Scholar
  3. Claypool, G. E., andI. R. Kaplan 1975. The origin and distribution of methane in marine sediments, p. 99–139.In I. A. Kaplan (ed.). Nutrient Gases in Marine Sediments. Plenum Press, New York.Google Scholar
  4. Debont, J. A. M., andE. G. Mulder 1974. Nitrogen fixation and co-oxidation of ethylene by a methane-utilizing bacteria.J. Gen. Microbiol. 83:113–121.Google Scholar
  5. Howarth, R. W., and J. M. Teal. In press. Sulfate reduction in a New England salt marsh.Limnol. Oceanogr.Google Scholar
  6. Joint, E. R. 1978. Microbial production of an Estuarine mudflat.Estuarine Coastal Mar. Sci. 7:185–195.CrossRefGoogle Scholar
  7. Jorgensen, B. B. 1977. The sulfer cycle of a coastal marine sediment (Limfjorden, Denmark).Limnol. Oceanogr. 22:814–832.Google Scholar
  8. King, G. M., andW. J. Wiebe 1978. Methanogenesis in a Georgia salt marsh.Geochim. cosmochim. Acta 42:343–348.CrossRefGoogle Scholar
  9. Marshall, N., C. A. Oviatt, andA. M. Skaven. 1971. Productivity of the benthic microflora of shoal estuarine environments in southern New England.Int. Rev. Gesamten Hydrobiol. 56:947–956.CrossRefGoogle Scholar
  10. Martens, C. S., andR. A. Berner 1977. Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases.Limnol. Oceanogr. 22:10–25.Google Scholar
  11. Martens, C. S., andM. B. Goldhaber 1978. Early diagenesis in transitional sedimentary environments of the White Oak River Estuary, North Carolina.Limnol. Oceanogr. 23:428–441.Google Scholar
  12. Oremland, R. S., andB. F. Taylor 1975. Inhibition of methanogenesis in marine sediments by acetylene and ethylene: Validity of the acetylene reduction assay for anaerobic microcosms.Appl. Microbiol. 30:707–709.Google Scholar
  13. Reeburgh, W. S. 1969. Observations of gases in Chesapeake Bay sediments.Limnol. Oceanogr 14:368–375.Google Scholar
  14. Rudd, J. W. M., andR. D. Hamilton 1978. Methane cycling in a eutrophic shield lake and its effect on whole lake metabolism.Limnol. Oceanogr. 23:337–348.CrossRefGoogle Scholar
  15. Swain, F. M. 1973. Marsh gas from the Atlantic coastal plain. Advances in Organic Geochemistry, Proceedings of 6th Cong. Org. Geo. Chem., p. 673–687.Google Scholar
  16. Winfrey, M. R., andJ. G. Zeikus. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments.Appl. Environ. Microbiol. 33:275–281.Google Scholar

Copyright information

© Estuarine Research Federation 1981

Authors and Affiliations

  • Fredric Lipschultz
    • 1
  1. 1.Marine Biological LaboratoryThe Ecosystems CenterWoods Hole

Personalised recommendations