Skip to main content
Log in

Ebb-tidal fronts in Charleston Harbor, South Carolina: Physical and biological characteristics

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Surface accumulations of foam and flotsam as well as sharp salinity, density, turbidity gradients and regions of acoustic scatter were characteristic of ebb-tidal fronts in Charleston Harbor, South Carolina. Surface convergence velocities at these fronts averaged 0.06 m s−1 into the front at an angle of 30° to 60° with respect to the frontal axis, indicating along-front transport during the ebb. These fronts are tidally-induced, forming on the late flood and ebb along the interfaces of water masses. Horizontal and vertical measurements of density revealed that the upper harbor fronts form along the margin of a freshwater lens produced by riverine input. The hypothesis that these frontal zones have higher densities of phytoplankton and zooplankton than adjacent water masses was tested using chlorophylla measurements and net collections. The fronts did not demonstrate any significant accumulations of phytoplankton or zooplankton during the ebb tide. The results of this study suggest that the physical characteristics of ebb-tidal estuarine fronts in Charleston Harbor are periodic in nature and may indirectly affect plankton transport in this coastal plain estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Booth, D. A. 1987. Some consequences of a flood tide front in Loch Creran.Estuarine Coastal Shelf Sci. 24:363–375.

    Article  Google Scholar 

  • Bowman, M. J. andW. E. Esalas. 1978. Proceedings of the workshop, p. 6–13.In M. J. Bowman and W. E. Esaias (eds.), Oceanic Fronts in Coastal Processes. Springer-Verlag, New York.

    Google Scholar 

  • Brandt, S. B. andV. A. Wadley. 1981. Thermal fronts as ecotones and zoogeographic barriers in marine and freshwater systems.Proc Ecol. Soc. Aust. 11:13–26.

    Google Scholar 

  • Conover, W. J. 1980. Practical Nonparametric Statistics. John Wiley and Sons, New York. 493 p.

    Google Scholar 

  • Dustan, P. andJ. Pinckney. 1989. Tidally-induced estuarine phytoplankton patchiness.Limnol. Oceanogr. 34:408–417.

    Article  Google Scholar 

  • Farmer, D. M. andJ. D. Smith. 1980. Tidal interaction of stratified flow with a sill in Knight Inlet.Deep-Sea Res. 27:239–254.

    Article  Google Scholar 

  • Floodgate, G. D., G. E. Fogg, D. A. Jones, K. Lochte, andC. M. Turley. 1981. Microbiological and zooplankton activity at a front in Liverpool Bay.Nature 290:133–136.

    Article  Google Scholar 

  • Herbst, G. N., D. P. Weston, andJ. G. Lorman. 1979. The distributional response of amphipod and decapod crustaceans to a sharp thermal front north of Cape Hatteras, North Carolina.Bull. Biol. Soc. Wash. 3:118–213.

    Google Scholar 

  • Huzzey, L. M. andJ. M. Brubaker. 1988. The formation of longitudinal fronts in a coastal plain estuary.J. Geophys. Res. 93:1329–1334.

    Article  Google Scholar 

  • Kiorboe, T. andK. Johansen. 1986. Studies of larval herring (Clupea harengus L.) patch in the Buchan area. IV. Zooplankton distribution and productivity in relation to hydrographic features.Dana 6:37–51.

    Google Scholar 

  • Klemas, V. andD. F. Polis. 1977. Remote sensing of estuarine fronts and their effects on pollutants.Photogramm. Eng. Remote Sens. 43:599–612.

    Google Scholar 

  • LeFevre, J. 1986. Aspects of the biology of frontal zones.Adv. Mar. Biol. 23:163–299.

    Article  Google Scholar 

  • Nunes, R. A. andJ. H. Simpson. 1985. Axial convergence in a well-mixed estuary.Estuarine Coastal Shelf Sci. 20:637–649.

    Article  Google Scholar 

  • Officer, C. B. 1976. Physical Oceanography of Estuaries. John Wiley and Sons, New York. 465 p.

    Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergammon Press, New York. 173 p.

    Google Scholar 

  • Seliger, H. H., K. R. McKinley, W. H. Biggley, R. B. Rivkin, andK. R. H. Aspden. 1981. Phytoplankton patchiness in frontal regions.Mar. Biol. 61:119–131.

    Article  Google Scholar 

  • Sick, L. V., C. C. Johnson, andR. Engel. 1978. Trace metal enhancement in the biotic and abiotic components of an estuarine tidal front.J. Geophys. Res. 83:4659–4667.

    Article  CAS  Google Scholar 

  • Simpson, J. H. andW. R. Turrell. 1986. Convergent fronts in the circulation of tidal estuaries, p. 139–152.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, New York.

    Google Scholar 

  • Smith, R. C., P. Dustan, D. Au, K. S. Baker, andE. A. Dunlap. 1986. Distribution of cetaceans and sea-surface chlorophyll concentrations in the California Current.Mar. Biol. 91:385–402.

    Article  Google Scholar 

  • Szekielda, K. H., S. L. Kupperfman, V. Klemas, andD. F. Polis. 1972. Elemental enrichment in organic films and foam associated with aquatic frontal systems.J. Geophys. Res. 77:5278–5282.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Grice Marine Biological Laboratory Contribution No. 83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinckney, J., Dustan, P. Ebb-tidal fronts in Charleston Harbor, South Carolina: Physical and biological characteristics. Estuaries 13, 1–7 (1990). https://doi.org/10.2307/1351425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1351425

Keywords

Navigation