, Volume 42, Issue 3, pp 197–211 | Cite as

Cladistics of the Spermatophyta

  • Henry Loconte
  • Dennis W. Stevenson


A cladistic interpretation of seed plant phylogeny is presented that supports the traditional morphological hypothesis: [Cycadales-(Ginkgoales-(Coniferales-(Gnetales-Angiosperms)))]. Gnetales and Angiosperms are supported as sister groups of theAnaspermae. A sister-group relationship between Coniferales and Ginkgoales represents a paraphyletic group, because Coniferales and Anaspermae share a common ancestry (Mesospermae). Ginkgoales and Mesospermae are sister groups of theCladospermae. Cycadales are supported as the most archaic Spermatophyta.A posteriori consideration of fossil taxa supports the conclusion that data from the fossil record are useful for confirming plesiomorphies of extant taxa. Fossil taxa with apomorphic character states are discussed as biasing for superficial accelerated transformations, which are probably unacceptable from the standpoint of morphological homology.


Pollen Tube Sister Group Seed Plant Double Fertilization Extant Taxon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ax, P. 1987. The phylogenetic system. The systematization of organisms on the basis of their phylogenesis. John Wiley & Sons, Chichester.Google Scholar
  2. — 1990. The integration of fossils in the phylogenetic system of organisms. Abh. Verh. Naturwiss. Vereins Hamburg 28: 10–26.Google Scholar
  3. Bailey, I. W. 1920. The cambium and its derivative tissues. Size variations of cambial initials in gymnosperms and angiosperms. Amer. J. Bot. 7: 355–367.CrossRefGoogle Scholar
  4. Bierhorst, D. W. 1971. Morphology of vascular plants. Macmillan, New York.Google Scholar
  5. Braun, A. 1864. Anthophyta. Page 26.In: P. Ascherson, editor. Flora der Provinz Brandenburg. Verlag von August Hirschwald, Berlin.Google Scholar
  6. Chamberlain, C. J. 1935. Gymnosperms. Structure and evolution. University of Chicago Press, Chicago.Google Scholar
  7. Clowes, F. A. L. 1961. Apical meristems. Blackwell Publishers, Oxford.Google Scholar
  8. Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard. 72: 716–793.CrossRefGoogle Scholar
  9. — 1988. Major clades and relationships in the higher gymnosperms. Pages 218–272.In: C. B. Beck, editor. Origin and evolution of gymnosperms. Columbia University Press, New York.Google Scholar
  10. Cronquist, A. 1968. The evolution and classification of flowering plants. Houghton Mifflin, Boston.Google Scholar
  11. — 1971. Introductory botany. Harper & Row, New York.Google Scholar
  12. — 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  13. — 1987. A botanical critique of cladism. Bot. Rev. 53: 1–52.CrossRefGoogle Scholar
  14. — 1988. The evolution and classification of flowering plants. 2nd ed. New York Botanical Garden, New York.Google Scholar
  15. Donoghue, M. J. 1989. Phylogenies and the analysis of evolutionary consequences, with examples from seed plants. Evolution 43: 1137–1156.CrossRefGoogle Scholar
  16. Donoghue, M. J. & J. A. Doyle. 1989a. Phylogenetic studies of seed plants and angiosperms based on morphological characters. Pages 181–193.In: B. Fernholm, K. Bremer & H. Jornvall, editors. The hierarchy of life. Elsevier Science Publishers B.V., Amsterdam.Google Scholar
  17. ——. 1989b. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae.In: P. R. Crane & S. Blackmore, editors. Evolution, systematics, and fossil history of the Hamamelidae. Clarendon Press, Oxford.Google Scholar
  18. ——, J. Gauthier, A. G. Kluge & T. Rowe, 1989. The importance of fossils in phylogenetic reconstruction. Ann. Rev. Ecol. Syst. 20: 431–460.CrossRefGoogle Scholar
  19. Doyle, J. A. 1988. Pollen evolution in seed plants: a cladistic perspective. J. Palyn. 24: 7–18.Google Scholar
  20. — & M. J. Donoghue. 1986. Seed plant phylogeny and the origin of the angiosperms: an experimental cladistic approach. Bot. Rev. 52: 321–431.Google Scholar
  21. ——. 1987a. The importance of fossils in elucidating seed plant phylogeny and macroevolution. Rev. Paleobot. Palyn. 50: 63–95.CrossRefGoogle Scholar
  22. ——. 1987b. The origin of angiosperms: a cladistic approach. Pages 17–49.In: E. M. Friis, W. G. Chaloner & P. R. Crane, editors. The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
  23. Erdtman, G. 1957. Pollen and spore morphology. Plant taxonomy. Gymnospermae, Pteridophyta, Bryophyta (illustrations). An introduction to palynology, Vol. 2. Almqvist & Wiksell. Stockholm.Google Scholar
  24. — 1965. Pollen and spore morphology. Plant taxonomy. Gymnospermae, Pteridophyta, Bryophyta (text). An introduction to palynology, Vol. 3. Almqvist & Wiksell, Stockholm.Google Scholar
  25. Fagerlind, F. 1947. Strobilus und Blüte vonGnetum und die Moglichkeit, aus ihrer Struktur den Blütenbau der Angiospermen zu deuten. Ark. Bot. 33a(8): 1–57.Google Scholar
  26. Foster, A. S. & E. M. Gifford. 1974. Comparative morphology of vascular plants. 2nd ed. W. H. Freeman, San Francisco.Google Scholar
  27. Friedman, W. E. 1989. Fertilization inEphedra nevadensis: preliminary evidence of double fertilization in a nonflowering seed plant. Amer. J. Bot. Suppl. 76(6): 34.Google Scholar
  28. — 1990. Double fertilization inEphedra. a nonflowering seed plant: its bearing on the origin of angiosperms. Science 247: 951–954.PubMedCrossRefGoogle Scholar
  29. Gauthier, J., A. G. Kluge & T. Rowe. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4: 105–209.Google Scholar
  30. Gifford, E. M. & G. E. Corson. 1971. The shoot apex in seed plants. Bot. Rev. 37: 143–229.Google Scholar
  31. — & A. S. Foster. 1988. Morphology and evolution of vascular plants. 3rd ed. W. H. Freeman, New York.Google Scholar
  32. Haeckel, E. 1894. Systematische phylogenie der protisten und pflanzen. Verlag von Georg Reimer, Berlin.Google Scholar
  33. Harris, T. M. & W. Millington. 1974. The Yorkshire Jurassic flora. Vol. 4, Ginkgoales. British Museum, London.Google Scholar
  34. Hart, J. A. 1987. A cladistic analysis of conifers: preliminary results. J. Arnold Arbor. 68: 269–307.Google Scholar
  35. Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.Google Scholar
  36. Hill, C. R. & P. R. Crane. 1982. Evolutionary cladistics and the origin of angiosperms. Pages 269–361.In: K. A. Joysey & E. A. Friday, editors. Problems of phylogenetic reconstruction. Academic Press, London.Google Scholar
  37. Loconte, H. 1990. Cladistic classification of Amniota: a response to Gauthier et al. Cladistics 6: 187–190.Google Scholar
  38. Loconte, H. & D. W. Stevenson. In review. Cladistics of the Magnoliidae. Cladistics.Google Scholar
  39. Logan, K. J. & B. A. Thomas. 1985. Distribution of lignin derivatives in plants. New Phytol. 99: 571–585.CrossRefGoogle Scholar
  40. Maddison, W. & D. Maddison. 1990. MacClade III. Sinauer Associates, Sunderland, MA.Google Scholar
  41. Martens, P. 1971. Les gnetophytes. Gebrüder Borntraeger, Berlin.Google Scholar
  42. McLean, R. C. & M. Evans. 1934. The Maeule reaction and the systematic position of the Gnetales. Nature 143: 936–937.CrossRefGoogle Scholar
  43. Meeuse, A. D. J. 1986. Again: double fertilization and the mono- versus the pleiophyletic evolution of angiosperms. Phytomorphology 36: 17–21.Google Scholar
  44. Meyen, S. V. 1984. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot Rev. 50: 1–111.CrossRefGoogle Scholar
  45. Michaux, B. 1989. Morphological variation of species through time. J. Linnean Soc., Biol. 38: 239–255.CrossRefGoogle Scholar
  46. Miller, C. N. 1988. The origin of modern conifer families. Pages 448–486,In: C. B. Beck, editor. Origin and evolution of gymnosperms. Columbia University Press, New York.Google Scholar
  47. Parenti, L. R. 1980. A phylogenetic analysis of the land plants. J. Linn. Soc., Biol. 13: 225–242.CrossRefGoogle Scholar
  48. Patterson, C. & D. E. Rosen. 1977. Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bull. Amer. Mus. Nat. Hist. 158: 81–172.Google Scholar
  49. Raubeson, L. A. & R. K. Jansen. 1989. Molecular evidence on conifer phylogeny: structural variation in the chloroplast genome. Amer. J. Bot. Suppl. 76(2): 222.Google Scholar
  50. Rodin, R. J. 1967. Ontogeny of foliage leaves inGnetum. Phytomorphology 17: 118–128.Google Scholar
  51. Roth, I. 1977. Fruits of angiosperms. Gebrüder Borntraeger, Berlin.Google Scholar
  52. Singh, H. 1978. Embryology of gymnosperms. Gebrüder Borntraeger. Berlin.Google Scholar
  53. Steeves, T. A. & J. M. Sussex. 1989. Patterns in plant development. Cambridge University Press, Cambridge.Google Scholar
  54. Stevenson, D. W. 1976. Observations on phyllotaxis, stelar morphology, the shoot apex and gemmae ofLycopodium lucidulum (Lycopodiaceae). J. Linn. Soc., Bot. 72: 81–100.Google Scholar
  55. — 1978. Observations on the shoot apices of eusporangiate ferns. Kew Bull. 33: 279–282.CrossRefGoogle Scholar
  56. — 1981. Observations on ptyxis, phenology, and trichomes in the Cycadales and their taxonomic implications. Amer. J. Bot. 67: 465–475.CrossRefGoogle Scholar
  57. — 1985. A proposed classification of the Cycadales. Amer. J. Bot. 72: 971–972.Google Scholar
  58. — 1988. Strobilar ontogeny in the Cycadales. Pages 205–224.In: P. Leins, S. C. Tucker & P. Endress, editors. Aspects of floral development. J. Cramer, Berlin.Google Scholar
  59. — 1990. Morphology and systematics of the Cycadales. Mem. New York Bot. Gard. 57: 8–55.Google Scholar
  60. Strasburger, E. 1869. Die Befruchtung bei der Coniferen. Dabis, Jena.Google Scholar
  61. Swofford, D. L. 1990. Paup III. Illinois Natural History Survey, Champaign.Google Scholar
  62. Taylor, T. N. 1988. Pollen and pollen organs of fossil gymnosperms: phylogeny and reproductive biology. Pages 177–217.In: C. B. Beck, editor. Origin and evolution of gymnosperms. Columbia University Press, New York.Google Scholar
  63. Thomson, R. B. 1905. The megaspore-membrane of the gymnosperms. Univ. Toronto Stud. Biol. Ser. 4: 1–64.Google Scholar
  64. Vogel, E. F. de 1980. Seedlings of dicotyledons. Centre for Agricultural Publishing and Documentation. Wageningen.Google Scholar
  65. Wagner, W. H. 1964. Evolutionary patterns of living ferns. Mem. Torrey Bot. Club 21: 86–95.Google Scholar
  66. Walker, J. W. & J. J. Skvarla. 1975. Primitively columellaless pollen: a new concept in the evolutionary morphology of angiosperms. Science 187: 445–447.PubMedCrossRefGoogle Scholar
  67. — & A. G. Walker. 1984. Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Missouri Bot. Gard. 71: 464–521.CrossRefGoogle Scholar
  68. Young, D. A. & P. M. Richardson. 1982. A phylogenetic analysis of extant seed plants: the need to utilize homologous characters. Taxon 31: 250–254.CrossRefGoogle Scholar
  69. Zimmer, E. A., R. K. Hamby, M. L. Arnold, D. A. LeBlanc & E. C. Theriot. 1989. Ribosomal RNA phylogenies and flowering plant evolution. Pages 205–214.In: B. Fernholm, K. Bremer & H. Jornvall, editors The hierarchy of life. Elsevier Science Publishers B.V., AmsterdamGoogle Scholar

Copyright information

© the New York Botanical Garden 1990

Authors and Affiliations

  • Henry Loconte
    • 1
  • Dennis W. Stevenson
    • 1
  1. 1.New York Botanical GardenBronx

Personalised recommendations