Advertisement

Estuaries

, Volume 21, Issue 4, pp 700–709 | Cite as

The effect of migratory shorebirds on the benthic species of three southwestern Atlantic Argentinean estuaries

  • Florencia BottoEmail author
  • Oscar O. Iribarne
  • Mariano M. Martínez
  • Kaspar Delhey
  • Martina Carrete
Article

Abstract

We experimentally evaluate the effect of migratory shorebirds on the benthic fauna of three southwestern Atlantic Argentinean stop-over and wintering sites: Bahía Samborombon (35°30′–36°22′S, 57°23′W), Mar Chiquita coastal lagoon (37°40′S, 57°26′W), and Bahía Blanca (38°48′–39°25′S, 50°–62°25′W). The experiments consisted of exclusion ceilings and controls (both 1 m2), with 10 replicates each and aligned at the same tidal level. During December 1994–May 1995 these experiments were done, twice in Bahía Samborombon, twice at two sites (Sotelo and Celpa) 4 km apart in Mar Chiquita coastal lagoon, and three times in Bahía Blanca. Three polychaete species (Laeonereis acuta, Nephtys fluviatilis, andHeteromastus similis) were found in similar densities in both areas of the Mar Chiquita lagoon.L. acuta andN. fluviatilis were affected in Sotelo, but there was no treatment effect in Celpa. In Sotelo the most abundant shorebirds were Hudsonian godwit (Limosa haemastica), American golden plover (Pluvialis dominica), and White-rumped sandpiper (Calidris fuscicollis), and in Celpa the most abundant shorebirds were White-rumped sandpiper, two-banded plower (Charadrius falklandicus), and lesser yellowlegs (Tringa flavipes). The largest polychaete densities were in the upper sediment layer (0–6 cm), which was also the most affected layer. Three polychaete species were found in Bahía Samborombon (L. acuta, H. similis, andNeanthes succinea), but onlyH. similis showed a treatment effect. The most abundant shorebirds in Samborombon were white-rumped sandpiper and two-banded plover. No effect was detected in Bahía Blanca, where the most abundant shorebirds were white-rumped sandpiper and American golden plover. In all cases, the species affected by shorebirds were the most abundant species. From the two sites of Mar Chiquita, there was a treatment effect only in Sotelo, which was also the area with higher shorebirds counts. However, much lower densities observed in Samborombon (similar to the unaffected area of Mar Chiquita) also produced a significant decrease in infaunal abundance. These evidences also suggest that just selection of study sites may produce different views of the interaction between shorebirds and benthic species.

Keywords

Polychaete Benthic Species Size Frequency Distribution Polychaete Species Migratory Shorebird 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Blanco, D. E., P. González, andM. M., Maritinez. 1995. Migración de la becasa de marLimosa haemastica (Aves, Scolopacidae) en el sur de América del Sur.Vida Silvestre Neotropical 4:119–124.Google Scholar
  2. Botton, M. L. 1984. Effects of laughing gull and shorebird predation on the intertidial fauna. at Cape May New Jersey.Estuarine, Coastal and Shelf Science 18:209–220.CrossRefGoogle Scholar
  3. Bryant, D. M. 1979. Effects of prey density and site character on estuary usage by overwintering waders (Charadrii).Estuarine, Coatstal and marine Science 9:369–384.CrossRefGoogle Scholar
  4. Conover, W. J. 1980. Practical Nonparametric Statistics. Second edition. John Wiley and Sons, Inc., New York.Google Scholar
  5. Dabbene, L. 1920. Notas sobre los chorlos de Norteamérica que invernan en la Repulica Argentina.Hornero 2:99–128.Google Scholar
  6. Fairweather, P. G.. 1991. Statical power and design requirements for environmental monitoring.Australian Journal of Marine and Freshwater Research 42:555–557.CrossRefGoogle Scholar
  7. Goss Custard, J. D. 1984 Intake rates and food supply in migrating and wintering shorebirds.In J. Burger and B. L. Olla (eds.), Shorebirds: Migration and Foraging Behavior 6:233–277.Google Scholar
  8. Goss Custard, J. D. 1985. Foraging behavior of wading birds on the carrying capacity of estuaries.In R. M. Sibly and R. H. Smith (eds.) Behavioural Ecology. Blackwell Scientific Publications, Oxford. EnglandGoogle Scholar
  9. Mercier, F. andR. McNeil. 1994. Seasonal variation in intertidal density of invertebrates prey in a tropical lagoon and effects of shorebird predation.Canadian Journal of Zoology 72:1755–1763.CrossRefGoogle Scholar
  10. Morrison, R. I. G. and B. A. Harrington. 1979. Critical shorebird Resources in James Bay and eastern North America. Transactions of the 44th American Wildlife and Natural Resources Conference, Wildilife management Institute, Washington D.C.Google Scholar
  11. Morrison, R. I. G. andJ. P. Myers. 1987. Wader migration systems in the New World.Wader Study Group Bulletin 49:suppl/IWRB Special Publication, 7:57–69.Google Scholar
  12. Morrison, R. I. G. andR. K. Ross. 1989. Atlas of Neartic shorebirds on the coast of South America.Canadian, Wildlife Service Special Publication 2:131–323.Google Scholar
  13. Mouritsen, K. N. andK. T. Jensen. 1992. Choice of microhabitat in tactile foraging dunlinsCalidris alpina: The importance of sediment pentrability.Marine Ecology Progress Series 85:1–8.CrossRefGoogle Scholar
  14. Myers, J. P., R. I. G. Morrison, P. Z. Antas, B. A. Herrington, T. E. Jovejoy, M. Sallaberry, S. E. Senner, andA. Tarak. 1987. Conservation strategy for migratory species.American Scientist 75:19–26.Google Scholar
  15. Myers, J. P. andL. P. Myers. 1979. Shorebirds of coastal Buenos Aires Province, Argentina.Ibis, 121:186–200.CrossRefGoogle Scholar
  16. Myers, J. P., S. L. Williams, andF. A. Pitelka. 1980. An experimental analysis of prey availability of sanderlings (Aves: Scolopacidae) feeding on sandy beach crustacean.Canadian Journal of Zoology 58:1564–1574.CrossRefGoogle Scholar
  17. Olrog, C. 1967. Observaciones sobre aves migratorias, del hemisferio norte.Hernero 10:292–298.Google Scholar
  18. Pienkowski, M. W. 1981. How foraging plovers cope with environmental effectal effects on invertebrate behaviour and availability.In N. V. Jones and W. J. Wolff (eds.), Feeding and Survival Strategies of Estuarine Organisms. Plenum Press, New York.Google Scholar
  19. Piersma, T., 1996a. Family Charadriidae (Plovers),In J. del Hoyo, A. Elliot, and J. Sargatal (eds.) 1996. Handbook of the Birds of the World, Vol. 3. Hoatzin to Auks. Lynx Edicions, Barcelona, Spain.Google Scholar
  20. Piersma, T. 1996b. Familiy, Scolopacidae (Sandpipers, Snips and Phalaropes), p.In J. del Hoyo, A. Elliot, and J. Sargatal (eds.), 1996. Handbook of the Birds of the World. Vol. 3. Hoatzin to Auks. Lynx Edicions, Barcelona, Spain.Google Scholar
  21. Quammen, M. L. 1981. Use of exclosures in studies of predation by shorebirds on intertidal mudflats.Auk 82:812–817.Google Scholar
  22. Quammen, M. L. 1984. Predation by shorebirds, fish, and crabs on invertebrates on intertidial mudflats: An experimental test.Ecology 65:529–537.CrossRefGoogle Scholar
  23. Schneider, D. 1978. Equalization of prey numbers by migratory shorebirds.Nature 271:353–354.CrossRefGoogle Scholar
  24. Velasquez, C. R. 1987. Depredación por parte de las aves sobre la macroinfauna intermareal de fondos blandos en el estuario del río Quelque (IX Región, Chile). Tesis Magister Ciencias Zoologicas, Universidad Austral de Chile ChileGoogle Scholar
  25. Vila, A. R., E. R. Bremer, andM. Beade. 1994. Censos de chorlos y playeros migratorios en la Bahía Samborombón, Provincia de Buenos Aires, Argentina. Final report, Fundación Vida Silvestre Argentina. Buenos Aires, Agrentina.Google Scholar
  26. Wanink, J. H. andL. Zwarts. 1993. Environmental effects on the growth rate of intertidal invertebrates and some implications for foraging waders.Netherland Journal of Sea Research 31:407–418.CrossRefGoogle Scholar
  27. Wilson, W. H 1990. Competition and predation in marine soft sediment communities.Annual Review of Ecology and Systematics 21:221–241.CrossRefGoogle Scholar
  28. Wilson, W. H. 1991. The foraging ecology of migratory shorebirds in marine, soft-sediment communities: The effects of episodic predation on prey populations.American Zoologist 31: 840–848.Google Scholar
  29. Zar, J. H. 1984. Biostatical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar
  30. Zwarts, L., A. M. Blomert andJ. H. Wanink, 1992. Annual and seasonal variation in the food supply harvestable by knotCalidris canutus staging in the Wadden Sea in late summer.Marine Ecology Progress Series 83:129–139.CrossRefGoogle Scholar
  31. Zwarts, L. andP. Esselink. 1989. Versatility of male curlews,Numerinus arquata, preying uponNereis diversicolor. Deploying contrasting capture modes dependent on prey availabity.Marine Ecology Progress Series 56:255–269.CrossRefGoogle Scholar
  32. Zwarts, L. andJ. H. Wanink. 1991. The macrobenthos fraction accesible to waders may represent marginal prey.Oecologia 87: 581–587.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1998

Authors and Affiliations

  • Florencia Botto
    • 1
    Email author
  • Oscar O. Iribarne
    • 1
  • Mariano M. Martínez
    • 1
  • Kaspar Delhey
    • 2
  • Martina Carrete
    • 2
  1. 1.Departamento de Biología, FCEyNUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Bahía BlancaArgentina

Personalised recommendations