, Volume 24, Issue 3, pp 357–367 | Cite as

Effects of sea level induced disturbances on high salt marsh metabolism

  • W. D. MillerEmail author
  • S. C. Neubauer
  • I. C. Anderson


Salt marshes, which provide a transition between the marine and terrestrial environments around much of the temperature world, will be the first ecosystem to feel the effects of an increased rate of sea level rise. This study examined the metabolic responses of a high salt marsh to increased inundation and wrack deposition associated with sea level rise. We measured changes in ecosystem and soil photosynthesis and respiration by analyzing carbon dioxide fluxes in the light and dark. Data from seasonal flux measurements were combined with continuously measured light and temperature data to develop a model that estimated annual production and respiration. Results suggested that increased inundation will reduce respiration rates to a greater extent than production, yielding a moderate net loss of organic carbon from the high marsh. The model also predicted a substantial loss of organic carbon from wrack-affected areas. This decreased organic carbon input may play an important role in the ability of the marsh to maintain elevation relative to sea level rise.


Respiration Photosynthesis Salt Marsh Accretion Rate Ecosystem Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bandyopadhyay, B. K., S. R. Pezeshki, R. D. DeLaune, andC. W. Lindau. 1993. Influence of soil oxidation-reduction potential and salinity on nutrition, N15 uptake, and growth ofSpartina patens.Wetlands 13:10–15.Google Scholar
  2. Bertness, M. D., andA. M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community.Ecological Monographs 57:129–147.CrossRefGoogle Scholar
  3. Braatz, B. V. andD. G. Aubrey. 1987. Recent relative sea-level change in eastern North America, p. 29–48.In D. Nummedal, O. H. Pilkey, and J. D. Howard (eds.), Sea-level Fluctuations and Coastal Evolution. SEPM Special Publication 41. Society of Economic Paleontologist and Mineralogists, Tulsa, Oklahoma.Google Scholar
  4. Bricker-Urso, S., S. W. Nixon, J. K. Cochran, D. J. Hirschberg, andC. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes.Estuaries 12:300–317.CrossRefGoogle Scholar
  5. Brinson, M. M., R. R. Christian, andL. K. Blum. 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary.Estuaries 18:648–659.CrossRefGoogle Scholar
  6. Broome, S. W., I. A. Mendelssohn, andK. L. McKee. 1995. Relative growth ofSpartina patens (Ait.) Muhl. andScirpus olneyi Gray occurring in a mixed stand as affected by salinity and flooding depth.Wetlands 15:20–30.Google Scholar
  7. Burdick, D. M., andI. A. Mendelssohn. 1987. Waterlogging responses in dune swale and marsh populations ofSpartina patens under field conditions.Oecologia 74:321–329.CrossRefGoogle Scholar
  8. Burdick, D. M., I. A. Mendelssohn, andK. L. McKee. 1989. Live standing crop and metabolism of the marsh grassSpartina patens as related to edaphic factors in a brackish, mixed marsh community in Louisiana.Estuaries 12:195–204.CrossRefGoogle Scholar
  9. Cahoon, D. R., D. J. Reed, andJ. W. Day, Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited.Marine Geology 128:1–9.CrossRefGoogle Scholar
  10. Craft, C. B., E. D. Seneca, andS. W. Broome. 1993. Vertical accretion in microtidal regularly and irregularly flooded estuarine marshes.Estuarine, Coastal and Shelf Science 37:371–386.CrossRefGoogle Scholar
  11. DeLaune, R. D., J. A. Nyman, andW. H. Patrick. 1994. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh.Journal of Coastal Research 10:1021–1030.Google Scholar
  12. DeLaune, R. D., S. R. Pezeshki, andW. H. Patrick. 1987. Response of coastal plants to increase in submergence and salinity.Journal of Coastal Research 3:535–546.Google Scholar
  13. Gornitz, V., S. Lebedeff, andJ. E. Hansen. 1982. Global sea level trends in the past century.Science 215:1611–1614.CrossRefGoogle Scholar
  14. Hartman, J. M., H. Caswell, andI. Valiela. 1983. Effects of wrack accumulation on salt marsh vegetation, p. 99–102.In C. Cabioch, M. Glenmaree, and J. Samain (eds.), Fluctuation and Succession in Marine Ecosystems. Proceedings of the 17th European Marine Biology Symposium, 1982, Brest, France. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
  15. Hatton, R. S., R. D. DeLaune, andW. H. Patrick. 1983. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana.Limnology and Oceanography 28:494–502.Google Scholar
  16. Hayden, B. P., R. Dueser, T. Callahan, andH. H. Shugart. 1991. Long-term research at the Virginia Coast Reserve.Bioscience 41:310–318.CrossRefGoogle Scholar
  17. Hmieleski, J. I. 1994. High marsh-forest transitions in a brackish marsh: The effects of slope. M.S. Thesis, East Carolina University, Greenville, North Carolina.Google Scholar
  18. Hoffman, J. S. 1984. Estimates of future sea level rise, p. 79–104.In M. C. Barth and J. G. Titus (eds.), Greenhouse Effect and Sea Level Rise; A Challenge for this Generation. Van Nostrand Reinhold Company, New York.Google Scholar
  19. Holmes, R. W. andB. E. Mahall. 1982. Preliminary observations on the effects of flooding and desiccation upon the net photosynthetic rates of high intertidal estuarine sediments.Limnology and Oceanography 27:954–958.Google Scholar
  20. Krovetz, D. K., J. H. Porter, andD. L. Richardson. 1996. Meteorological measurements of the Virginia Coast Reserve LTER. Data of the Virginia Coast Reserve Long-term Ecological Research Project. Virginia Coast Reserve, Charlottesville, Virginia.Google Scholar
  21. Lorenzen, C. 1967. Determination of chlorophyll and phaeo-pigments: Spectrophotometric equations.Limnology and Oceanography 12:343–346.Google Scholar
  22. Miller, W. D. 1998. The effects of increased inundation and wrack deposition on photosynthesis and respiration in a Virginia salt marsh. M.A. Thesis, College of William and Mary, Williamsburg, Virginia.Google Scholar
  23. Milliman, J. D., andB. U. Haq 1996. Sea level rise and coastal subsidence: Towards meaningful strategies, p. 1–9.In J. D. Milliman and B. U. Haq (eds.), Sea Level Rise and Coastal Subsidence: Causes Consequences and Strategies. Kluwer Academic Publisher. Dordrecht, Netherlands.Google Scholar
  24. Moran, M. A., andR. E. Hodson. 1990. Contributions of degradingSpartina alterniflora lignocellulose to the dissolved organic carbon pool of a salt marsh.Marine Ecology Progress Series 62:161–168.CrossRefGoogle Scholar
  25. Morris, J. T. 1984. Effects of oxygen and salinity on ammonium uptake bySpartina alterniflora andSpartina patens.Journal of Experimental Marine Biology and Ecology 70:87–98.CrossRefGoogle Scholar
  26. Morris, J. T. 2000. Effects of sea level anomalies on estuarine processes, p. 107–127.In J. E. Hobbie (ed.), Estuarine Science: A Synthetic Approach in Research and Practice. Island Press, Washington, D.C.Google Scholar
  27. Nyman, J. A., andR. D. DeLaune. 1991. CO2 emission and soil Eh responses to different hydrological conditions in fresh, brackish, and saline marsh soils.Limnology and Oceanography 36:1406–1414.CrossRefGoogle Scholar
  28. Pezeshki, S. R., andR. D. Delaune. 1993. Effects of soil hypoxia and salinity on gas exchange and growth ofSpartina patens.Marine Ecology Progress Series 96:75–81.CrossRefGoogle Scholar
  29. Phleger, C. F. 1971. Effect of salinity on growth of a salt marsh grass.Ecology 52:908–911.CrossRefGoogle Scholar
  30. Pinckney, J. L., R. Papa, andR. G. Zingmark. 1994. Comparison of high-performance liquid chromatographic, spectrophotometric, and flourometric methods for determining chlorophylla concentrations in estuarine sediments.Journal of Microbiological Methods 19:59–66.CrossRefGoogle Scholar
  31. Pinckney, J. L., andR. G. Zingmark. 1993. Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems.Journal of Physicology 29:396–407.CrossRefGoogle Scholar
  32. Pomeroy, L. R. 1959. Algal productivity in salt marshes of Georgia.Limnology and Oceanography 4:386–397.Google Scholar
  33. Redfield, A. C. 1972. Development of a New England salt marsh.Ecological Monographs 42:201–237.CrossRefGoogle Scholar
  34. Reed, D. J. 1995. The response of coastal marshes to sea-level rise: Survival or submergence?Earth Surface Processes and Landforms 20:39–48.CrossRefGoogle Scholar
  35. Reidenbaugh, T. G. andW. C. Banta. 1980. Origins and effects ofSpartina wrack in a Virginia salt marsh.Gulf Research Reports 6:393–401.Google Scholar
  36. StatSoft, Inc. 1999. Electronic Statistics Textbook. StatSoft Inc., Tulsa, Oklahoma.Google Scholar
  37. Stevenson, J. C., M. S. Kearney, andE. C. Pendleton. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system.Marine Geology 67:213–235.CrossRefGoogle Scholar
  38. Stevenson, J. C., L. J. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level rise, p. 241–259.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, London, United Kingdom.Google Scholar
  39. Sullivan, M. J., andC. A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh.Journal of Phycology 88:49–58.Google Scholar
  40. Taylor, J. H. 1995. The effects of altered inundation and wrack deposition on nitrification, denitrification and the standing stocks of NO3 and NO2. M.S. Thesis, East Carolina University, Greensville, North Carolina.Google Scholar
  41. Tolley, P. M. 1996. Effects of increased inundation and wrack deposition on a saltmarsh plant community. M.S. Thesis, East Carolina University, Greenville, North Carolina.Google Scholar
  42. Tolley, P. M. andR. R. Christian. 1999. Effects of increased inundation and wrack deposition on a salt marsh plant community.Estuaries 22:944–954.CrossRefGoogle Scholar
  43. Van Raalte, C., I. Valiela, andJ. M. Teal. 1976. Production of epibenthic salt marsh algae: Light and nutrient limitation.Limnology and Oceanography 21:862–872.Google Scholar
  44. Warren, R. S., andW. A. Niering. 1993. Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion.Ecology 74:96–103.CrossRefGoogle Scholar
  45. Warrick, R. A., C. Le Provost, M. F. Meier, J. Oerlemans, andP. L. Woodworth. 1996. Changes in sea level, p. 359–405.In J. T. Houghton, L. G. Miera Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.), Climate Change 1995: The Science of Climate Change. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.Google Scholar
  46. Whiting, G. J., D. S. Bartlett, S. Fan, P. S. Baldwin, andS. C. Wofsy. 1992. Biosphere/atmosphere CO2 exchange in tundra ecosystems: Community characteristics and relationships with multispectral surface reflectance.Journal of Geophysical Research 97:16671–16680.Google Scholar
  47. Whitney, D. E., andW. M. Darley. 1983. Effects of light intensity upon salt marsh benthic microalgal photosynthesis.Marine Biology 75:249–252.CrossRefGoogle Scholar
  48. Zar, J. H. 1984. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar

Sources of Unpublished Materials

  1. Brinson, M. personal communication. East Carolina University, Greenville, North Carolina 27858.Google Scholar
  2. Christian, R. personal communication. East Carolina University, Greenville, North Carolina 27858.Google Scholar

Copyright information

© Estuarine Research Federation 2001

Authors and Affiliations

  • W. D. Miller
    • 1
    Email author
  • S. C. Neubauer
    • 2
  • I. C. Anderson
    • 2
  1. 1.Department of BiologyCollege of William and MaryWilliamsburg
  2. 2.School of Marine Science, Virginia Institute of Marine ScienceCollege of William and MaryGloucester Point

Personalised recommendations