, Volume 23, Issue 1, pp 80–96 | Cite as

Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay

  • Daniel M. Dauer
  • J. Ananda Ranasinghe
  • Stephen B. Weisberg


Associations between macrobenthic communities, measures of water column and sediment exposure, and measures of anthropogenic activities throughout the watershed were examined for the Chesapeake Bay, U.S. The condition of the macrobenthic communities was indicated by a multimetric benthic index of biotic integrity (B-IBI) that compares deviation of community metrics from values at reference sites assumed to be minimally altered by anthropogenic sources of stress. Correlation analysis was used to examine associations between sites with poor benthic condition and measures of pollution exposure in the water column and sediment. Low dissolved oxygen events were spatially extensive and strongly correlated with benthic community condition, explaining 42% of the variation in the B-IBI. Sediment contamination was spatially limited to a few specific locations including Baltimore Harbor and the Southern Branch of the Elizabeth River and explained about 10% of the variation in the B-IBI. After removing the effects of low dissolved oxygen events, the residual variation in benthic community condition was weakly correlated with surrogates for eutrophication—water column concentrations of total nitrogen, total phosphorus, and chlorophylla. Associations between benthic conditions and anthropogenic inputs and activities in the watershed were also studied by correlation analysis. Benthic condition was negatively correlated with measures of urbanization (i.e., population density, point source loadings, and total nitrogen loadings) and positively correlated with watershed forestation. Significant correlations were observed with population density and nitrogen loading below the fall line, but not above it, suggesting that near-field activities have a greater effect on benthic condition than activities in the upper watershed. At the tributary level, the frequency of low dissolved oxygen events and levels of sediment contaminants were positively correlated with population density and percent of urban land use. Sediment contaminants were also positively correlated with point source nutrient loadings. Water column total nitrogen concentrations were positively correlated with nonpoint nutrient loadings and agricultural land use while total phosphorus concentrations were not correlated with land use or nutrient loadings. Chlorophylla concentrations were positively correlated with nitrogen and phosphorus concentrations in the water column and with agricultural land use but were not correlated with nutrient loads.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alden, III,R. W., A. S. Gordon, E. F. Stillwell, R. K. Everton, andM. F. Helmstetter. 1988. An Evaluation of Toxicants/Mutagens in the Elizabeth River, Virginia in Relation to Land Use Activities. Report to the Virginia Water Control Board. Old Dominion University, Norfolk, Virginia.Google Scholar
  2. Allan, J. D., D. L. Erickson, andJ. Fay. 1997. The influence of catchment land use on stream integrity across multiple spatial scales.Freshwater Biology 37:149–161.CrossRefGoogle Scholar
  3. Baker, R. A. 1980a. Contaminants and Sediments. Volume 1. Fate and Transport, Case Studies, Modeling, Toxicity. Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  4. Baker, R. A. 1980b. Contaminants and Sediments. Volume 2. Analysis, Chemistry, Biology. Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  5. Balls, P. W. 1994. Nutrient inputs to estuaries from nine Scottish east coast rivers: Influence of estuarine processes on inputs to the North Sea.Estuarine Coastal and Shelf Science 39: 329–352.CrossRefGoogle Scholar
  6. Beasley, R. S. andA. B. Granillo. 1988. Sediment and water yields from managed forests on flat coastal plain sites.Water Resources Bulletin 24:361–366.Google Scholar
  7. Benzie, J. A. H., K. B. Pugh, andM. B. Davidson. 1991. The rivers of North East Scotland (UK): Physicochemical characteristics.Hydrobiologia 218:93–106.CrossRefGoogle Scholar
  8. Boicourt, W. C. 1992. Influences of circulation processes on dissolved oxygen in the Chesapeake Bay. p. 7–59.In D. E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay, A Synthesis of Recent Research. Maryland Sea Grant College. College Park, Maryland.Google Scholar
  9. Boynton, W. R., W. M. Kemp, andC. W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production, p. 69–90.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.Google Scholar
  10. Breitburg, D. L. 1990. Near-shore hypoxia in the Chesapeake Bay: Patterns and relationships among physical factors.Estuarine Coastal and Shelf Science 30:593–609.CrossRefGoogle Scholar
  11. Chaillou, J., C. Delisle, and J. A. Ranasinghe. 1992. An Integrated Assessment of Living Benthic Resources in Chesapeake Bay: Data Documentation Report. Prepared for the Governor's Council on Chesapeake Bay and the Maryland Department of Natural Resources. Versar, Inc., Columbia, Maryland.Google Scholar
  12. Chesapeake Bay Program. 1988. The Chesapeake Bay Program: Point Source Atlas. CBP/TRS 22/88. U.S. Environmental Protection Agency, Annapolis, Maryland.Google Scholar
  13. Comeleo, R. L., J. F. Paul, P. V. August, J. Copeland, C. Baker, S. S. Hale, andR. W. Latimer. 1996. Relationships between watershed stressors and sediment contamination in Chesapeake Bay estuaries.Landscape Ecology 11:307–319.CrossRefGoogle Scholar
  14. Conners, M. E. andR. J. Naiman. 1984. Particulate allochthonous inputs: Relationships with stream size in an undisturbed watershed.Canadian Journal of Fisheries and Aquatic Sciences 41:1473–1488.CrossRefGoogle Scholar
  15. Corbett, C. W., M. Wahl, D. E. Porter, D. Edwards, andC. Moise. 1997. Nonpoint source runoff modeling: A comparison of a forested watershed and an urban watershed on the South Carolina coast.Journal of Experimental Marine Biology and Ecology 213:133–149.CrossRefGoogle Scholar
  16. Correll, D. L. 1983. N and P in soils and runoff of three coastal plain land uses, p. 207–224.In R. Lowrance, R. Todd, L. Asmussen, and R. Leonard (eds.), Nutrient Cycling in Agricultural Ecosystems. University of Georgia Press. Athens, Georgia.Google Scholar
  17. Correl, D. L. 1987. Nutrients in Chesapeake Bay, p. 289–320.In S. K. Majumdar, L. W. Hall, Jr., and H. M. Austin (eds.), Contaminant Problems and Management of Living Chesapeake Bay Resources. Pennsylvania Academy of Sciences, Philadelphia, Pennsylvania.Google Scholar
  18. Correl, D. L. 1997. Buffer zones and water quality protection: General principles, p. 7–20.In N. E. Haycock, T. P. Burt, K. W. T. Goulding, and G. Pinay (eds.), Buffer Zones: Their Pro-cesses and Potential in Water Protection. Quest Environmental, Hertfordshire, United Kingdom.Google Scholar
  19. Correll, D. L., T. E. Jordan, andD. E. Weller. 1992. Nutrient flux in a landscape: Effects of coastal land use and terrestrial community mosaic on nutrient transport to coastal waters.Estuaries 15:431–442.CrossRefGoogle Scholar
  20. Correll, D. L., T. E. Jordan, andD. E. Weller. 1997. Livestock and pasture land effects on the water quality of Chesapeake Bay watershed streams, p. 107–116.In K. Steele (ed.), Animal Waste and the Land-Water Interface. Lewis Publishers, New York.Google Scholar
  21. Correll, D. L., J. J. Miklas, A. H. Hines, andJ. J. Schafer. 1987. Chemical and biological trends associated with acidic atmospheric deposition in the Rhode River watershed and estuary (Maryland, USA).Water Air and Soil Pollution 35:63–86.CrossRefGoogle Scholar
  22. Correll, D. L. andD. E. Weller. 1997. Nitrogen input-output budgets for forests in the Chesapeake Bay watershed, p. 431–442.In J. E. Baker (ed.), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. Society of Environmental Toxicology and Chemistry Press, Pensacola, Florida.Google Scholar
  23. Cronin, W. B. 1971. Volumetric, Areal, and Tidal Statistics of the Chesapeake Bay Estuary and Its Tributaries. Special Report 20, Chesapeake Bay Institute, The Johns Hopkins University. Baltimore, Maryland.Google Scholar
  24. Cronin, W. B. andD. W. Pritchard. 1975. Additional Statistics on the Dimensions of the Chesapeake Bay and Its Tributaries: Cross-section Widths and Segment Volumes Per Meter Depth. Special Report 42. Chesapeake Bay Institute, The Johns Hopkins University. Baltimore, Maryland.Google Scholar
  25. Dauer, D. M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure.Marine Pollution Bulletin 26:249–257.CrossRefGoogle Scholar
  26. Dauer, D. M. andW. G. Conner. 1980. Effects of moderate sewage input on benthic polychaete populations.Estuarine and Coastal Marine Science 10:335–346.CrossRefGoogle Scholar
  27. Dauer, D. M., M. W. Luchenback, andA. J. Rodi, Jr. 1993. Abundance biomass comparisons (ABC method): Effects of an estuary gradient, anoxic/hypoxic events and contaminated sediments.Marine Biology 116:507–518.CrossRefGoogle Scholar
  28. Dauer, D. M., H. G. Marshall, K. E. Carpenter, M. F. Lane, R. W. Alden, III, K. K. Nesius, and L. W. Haas. 1998. Virginia Chesapeake Bay Water Quality and Living Resources Monitoring Programs: Executive Report, 1985–1996. Final Report to the Virginia Department of Environmental Quality, Old Dominion University, Norfolk, Virginia.Google Scholar
  29. Dauer, D. M., A. J. Rodi, Jr., andJ. A. Ranasinghe. 1992. Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay.Estuaries 15:384–391.CrossRefGoogle Scholar
  30. Day, Jr.,J. W., C. A. S. Hall, W. M. Kemp, andA. Yanez-Arancibia. 1989. Estuarine Ecology. John-Wiley & Sons, New York.Google Scholar
  31. D'Elia, C. F., J. G. Sanders, andW. R. Boynton. 1986. Nutrient enrichment in a coastal plain estuary: Phytoplankton growth in large-scale continuous cultures.Canadian Journal of Fisheries and Aquatic Sciences 43:397–406.CrossRefGoogle Scholar
  32. Diaz, R. J. andR. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna.Oceanography and Marine Biology: An Annual Review 33:245–305.Google Scholar
  33. Duda, A. M. 1982. Municipal point source and agricultural nonpoint source contributions to coastal eutrophication.Water Resources Bulletin 18:397–407.Google Scholar
  34. Eskin, R. A., K. H. Rowland, andD. Y. Alegre. 1996. Contaminants in Chesapeake Bay sediments 1984–1991. CBP/TRS 145/96. U.S. Environmental Protection Agency. Annapolis, Maryland.Google Scholar
  35. Eyre, B. 1994. Nutrient biogeochemistry in the tropical Moresby River estuary system north Queensland, Australia.Estuarine Coastal and Shelf Science 39:15–31.CrossRefGoogle Scholar
  36. Ferraro, S. P., R. C. Swartz, F. A. Cole, andD. W. Schults. 1991. Temporal changes in the benthos along a pollution gradient: Discriminating the effects of natural phenomena from sewage-industrial wastewater effects.Estuarine Coastal and Shelf Science 33:383–407.CrossRefGoogle Scholar
  37. Fisher, D. C. andM. Oppenheimer. 1991. Atmospheric deposition and the Chesapeake Bay estuary.Ambio 20:102–108.Google Scholar
  38. Fisher, D. C., E. R. Peele, J. W. Ammerman, andL. W. Harding, Jr. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay.Marine Ecology Progress Series 82:51–64.CrossRefGoogle Scholar
  39. Fisher, S. G. andG. E. Likens. 1973. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism.Ecological Monographs 43:421–439.CrossRefGoogle Scholar
  40. Fulton, M. H., G. I. Scott, A. Fortner, T. F. Bidleman, andB. Ngabe. 1993. The effects of urbanization on small high salinity estuaries of the southeastern United States.Archives of Environmental Contamination and Toxicology 25:476–484.CrossRefGoogle Scholar
  41. Gold, A. A., P. A. Jacinthe, P. M. Groffman, W. R. Wright, andP. H. Puffer. 1998. Patchiness in groundwater nitrate removal in a riparian forest.Landscape Ecology 27:146–155.Google Scholar
  42. Grubaugh, J. W. andJ. B. Wallace. 1995. Functional structure and production of the benthic community in a Piedmont river: 1956–1957 and 1991–1992.Limnology and Oceanography 40: 490–501.Google Scholar
  43. Hall, Jr.,L. W., S. A. Fischer, W. D. Killen, Jr.,M. C. Scott, M. C. Ziegenfuss andR. D. Anderson. 1994. Status assessment in acid-sensitive and non-acid-sensitive Maryland coastal plain streams using an integrated biological, chemical, physical, and land-use approach.Journal of Aquatic Ecosystem Health 3:145–167.CrossRefGoogle Scholar
  44. Hall, Jr.,L. W., M. C. Scott, W. D. Killen, andR. D. Anderson. 1996. The effects of land-use characteristics and acid sensitivity on the ecological status of Maryland coastal plain streams.Environmental Toxicology and Chemistry 15:384–394.CrossRefGoogle Scholar
  45. Harding, Jr.,L. W. 1994. Long-term trends in the distribution of phytoplankton in Chesapeake Bay: Roles of light, nutrients and streamflow.Marine Ecology Progress Series 104:267–291.CrossRefGoogle Scholar
  46. Harding, Jr.,L. W. andE. G. Perry. 1997. Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950–1994.Marine Ecology Progress Series 157:39–52.CrossRefGoogle Scholar
  47. Heasly, P., S. Pultz, andR. Batiuk. 1989. Chesapeake Bay basin monitoring program atlas. U.S. Environmental Protection Agency, Annapolis, Maryland.Google Scholar
  48. Hill, A. 1996. Nitrate removal in stream riparian zones.Journal of Environmental Quality 25:743–755.Google Scholar
  49. Hinga, K. R., A. A. Keller, andC. A. Oviatt. 1991. Atmospheric deposition and nitrogen inputs to coastal waters.Ambio 20: 256–260.Google Scholar
  50. Hoffman, E. J., G. L. Mills, J. S. Latimer, andJ. G. Quinn. 1983. Annual inputs of petroleum hydrocarbons to the coastal environment via urban runoff.Canadian Journal of Fisheries and Aquatic Sciences 40:41–53.Google Scholar
  51. Holland, A. F., N. K. Mountford, andJ. A. Mihursky. 1977. Temporal variation in upper bay mesohaline benthic communities: 1. The 9-m mud habitat.Chesapeake Science 18:370–378.CrossRefGoogle Scholar
  52. Holland, A. F., A. T. Shaughnessy, andM. H. Hiegel. 1987. Long-term variation in mesohaline Chesapeake Bay macrobenthos: Spatial and temporal patterns.Estuaries 10:227–245.CrossRefGoogle Scholar
  53. Hopkinson, Jr.,C. S. andJ. J. Vallino. 1995. The relationships among man's activities in watersheds and estuaries: A model of runoff effects on patterns of estuarine community metabolism.Estuaries 18:598–621.CrossRefGoogle Scholar
  54. Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems.Annual Review of Ecology and Systematics 19:89–110.CrossRefGoogle Scholar
  55. Howarth, R. W., J. R. Fruci, andD. Sherman. 1991. Inputs of sediment and carbon to an estuarine ecosystem: Influence of land use.Ecological Applications 1:27–39.CrossRefGoogle Scholar
  56. Jaworski, N. A., P. M. Groffman, A. A. Keller, andJ. C. Prager. 1992. A watershed nitrogen and phosphorus balance: The Upper Potomac River Basin.Estuaries 15:83–95.CrossRefGoogle Scholar
  57. Johnston, C. A., N. E. Detenbeck, andG. J. Niemi. 1990. The cumulative effect of wetlands on stream water quality and quantity: A landscape approach.Biogeochemistry 10:105–142.CrossRefGoogle Scholar
  58. Jordan, T. E., D. L. Correll, J. Miklas, andD. E. Weller. 1991. Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge.Marine Ecology Progress Series 75:121–132.CrossRefGoogle Scholar
  59. Jordan, T. E., D. L. Correll, andD. E. Weller. 1997a. Effects of agriculture on discharges of nutrients from Coastal Plain watersheds of Chesapeake Bay.Journal of Environmental Quality 26:836–848.Google Scholar
  60. Jordan, T. E., D. L. Correll, andD. E. Weller. 1997b. Non-point source discharges of nutrients from Piedmont watersheds of Chesapeake Bay.Journal of the American Water Resources Association 33:631–646.CrossRefGoogle Scholar
  61. Jordan, T. E., D. L. Correll, andD. E. Weller. 1997c. Relating nutrient discharges from watersheds to land use and stream-flow variability.Water Resources Research 33:2579–2590.CrossRefGoogle Scholar
  62. Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, andI. J. Schlosser. 1986. Assessing Biological Integrity in Running Waters: A Method and Its Rationale. Special Publication 5. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  63. Kemp, W. M. andW. R. Boynton. 1992. Benthic-pelagic interactions: Nutrient and oxygen dynamics, p. 149–221.In D. E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay. A Synthesis of Recent Research. Maryland Sea Grant College. College Park, Maryland.Google Scholar
  64. Kemp, W. M., R. R. Twilley, J. C. Stevenson, W. R. Boynton, andJ. C. Means. 1983. The decline of submerged vascular plants in Upper Chesapeake Bay: Summary of results concerning possible causes.Marine Technology Society Journal 17:78–89.Google Scholar
  65. Klein, R. D. 1979. Urbanization and stream quality impairment.Water Resources Bulletin 15:948–963.Google Scholar
  66. Kuo, A. Y. andB. J. Neilson. 1987. Hypoxia and salinity in Virginia estuaries.Estuaries 10:277–283.CrossRefGoogle Scholar
  67. Lajtha, K., B. Seely, andI. Valiela. 1995. Retention and leaching of atmospherically-derived nitrogen in the aggrading coastal watershed of Waquiot Bay, MA.Biogeochemistry 28:33–54.CrossRefGoogle Scholar
  68. Lamberti, G. A. andM. B. Berg. 1995. Invertebrates and other benthic features as indicators of environmental change in Juday Creek, Indiana.Natural Areas Journal 15:249–258.Google Scholar
  69. Lenat, D. R. andJ. K. Crawford. 1994. Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams.Hydrobiologia 294:185–199.CrossRefGoogle Scholar
  70. Lerberg, S. B. 1997. Effects of watershed development on macrobenthic communities in tidal creeks of the Charleston harbor area. M.S. Thesis, University of Charleston, South Carolina.Google Scholar
  71. Linker, L. C. andD. Y. Allegre. 1992. Chesapeake Bay Program: Watershed Model Application to Calculate Bay Nutrient Loadings. Final Findings and Recommendations. Appendix E. Land Use and Selected Parameter Values. U.S. Environmental Protection Agency. Annapolis, Maryland.Google Scholar
  72. Long, E. R., D. D. McDonald, S. L. Smith, andF. D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments.Environmental Management 19:81–97.CrossRefGoogle Scholar
  73. Lowrance, R. 1992. Groundwater nitrate and denitrification in a coastal plain riparian forest.Journal of Environmental Quality 21:401–405.Google Scholar
  74. Malone, T. C. 1992. Effects of water column processes on dissolved oxygen, nutrients, phytoplankton and zooplankton, p. 61–112.In D. E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay. A Synthesis of Recent Research. Maryland Sea Grant College. College Park, Maryland.Google Scholar
  75. Malone, T. C., D. J. Conley, T. R. Fisher, P. M. Gilbert, andL. W. Harding. 1996. Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay.Estuaries 19:371–385.CrossRefGoogle Scholar
  76. Malone, T. C., L. H. Crocker, S. E. Pike, andB. A. Wendler. 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary.Marine Ecology Progress Series 48:235–249.CrossRefGoogle Scholar
  77. Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, andR. B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary.Marine Ecology Progress Series 32:149–160.CrossRefGoogle Scholar
  78. Mangun, W. R. 1989. A comparison of five Northern Virginia (USA) watersheds in contrasting land use patterns.Journal of Environmental Systems 18:133–151.Google Scholar
  79. Marsh, A. G. andK. R. Tenore. 1990. The role of nutrition in regulating the population dynamics of opportunistic, surface deposit feeders in a mesohaline community.Limnology and Oceanography 35:710–724.CrossRefGoogle Scholar
  80. Medeiros, C., R. LeBlanc, andR. A. Coler. 1983. An in situ assessment of the acute toxicity of urban runoff to benthic macroinvertebrates.Environmental Toxicology and Chemistry 2:119–126.CrossRefGoogle Scholar
  81. National Research Council. 1989. Contaminated Marine Sediments—Assessment and Remediation. National Academy Press. Washington, D.C.Google Scholar
  82. Nelson, W. M., A. A. Gold, andP. M. Groffman. 1995. Spatial and temporal variation in groundwater nitrate removal in a riparian forest.Journal of Environmental Quality 24:691–699.Google Scholar
  83. Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future consequences.Ophelia 41:199–219.Google Scholar
  84. Novotny, V. andG. Chesters. 1989. Delivery of sediment and pollutants from nonpoint sources: A water quality perspective.Journal of Soil and Water Conservation 44:568–576.Google Scholar
  85. Novotny, V., H. M. Sung, R. Bannerman, andK. Baum. 1985. Estimating nonpoint pollution from small urban watersheds.Journal of the Water Pollution Control Federation 57:339–348.Google Scholar
  86. NPA Data Services, Inc. 1991. Key Indicators of County Growth, 1970–2010. NPA Data Services, Inc., Washington, D.C..Google Scholar
  87. Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, and significance.Science 223:22–27.CrossRefGoogle Scholar
  88. Osborne, L. L. andD. A. Kovacic. 1993. Riparian vegetated buffer strips in water-quality restoration and stream management.Freshwater Biology 29:243–258.CrossRefGoogle Scholar
  89. Ostry, R. C. 1982. Relationship of water quality and pollutant loads to land uses in adjoining watersheds.Water Resources Bulletin 18:99–104.Google Scholar
  90. Oviatt, C., P. Doering, B. Nowicki, L. Reed, J. Cole, andJ. Frithsen. 1995. An ecosystem level experiment on nutrient limitation in temperate coastal marine environments.Marine Ecology Progress Series 116:171–179.CrossRefGoogle Scholar
  91. Pearson, T. H. andR. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment.Oceanography and Marine Biology: An Annual Review 16:229–311.Google Scholar
  92. Pihl, L., S. P. Baden, andR. J. Diaz. 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans.Marien Biology 108:349–360.CrossRefGoogle Scholar
  93. Ranasinghe, J. A., L. C. Scot, and F. S. Kelly. 1998. Chesapeake Bay Water Quality Monitoring Program. Long-term Benthic Monitoring and Assessment Component. Level 1 Comprehensive Report. July 1984–December 1997. Report to Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, Maryland.Google Scholar
  94. Ranasinghe, J. A., S. B. Weisberg, D. M. Dauer, L. C. Schaffner, R. J. Diaz, and J. B. Frithsen. 1994a. Chesapeake Bay Benthic Community Restoration Goals. Report for the U.S. Environmental Protection Agency, Chesapeake Bay Office and the Maryland Department of Natural Resources. Versar, Inc., Columbia, Maryland.Google Scholar
  95. Ranasinghe, J. A., S. B. Weisberg, J. Gerritsen, and D. M. Dauer. 1994b. Assessment of Chesapeake Bay Benthic Macroinvertebrate Resource Condition in Relation to Water Quality and Watershed Stressors. Report prepared for the Governor's Council on Chesapeake Bay Research Fund and the Maryland Department of Natural Resources. Versar, Inc., Columbia, Maryland.Google Scholar
  96. Richards, C. andG. Host. 1994. Examining land use influences on stream habitats and macroinvertebrates: A GIS approach.Water Resources Bulletin 30:729–738.Google Scholar
  97. Richards, C., L. B. Johnson, andG. E. Host 1996. Landscapescale influences on stream habitats and biota.Canadian Journal of Fisheries and Aquatic Sciences 53 (Supplement 1):295–311.CrossRefGoogle Scholar
  98. Roth, N. E., J. D. Allan, andD. L. Erickson. 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales.Landscape Ecology 11:141–156.CrossRefGoogle Scholar
  99. Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment.Science 171:1008–1013.CrossRefGoogle Scholar
  100. Schmidt, S. D. andD. R. Spencer. 1986. The magnitude of improper waste discharges in an urban stormwater system.Journal of the Water Pollution Control Federation 58:744–748.Google Scholar
  101. Seitzinger, S. P. andR. W. Sanders. 1997. Nitrogen, phosphorus and eutrophication in the coastal marine environment.Marine Ecology Progress Series 159:1–12.CrossRefGoogle Scholar
  102. Taft, J. L., W. R. Taylor, E. O. Hartwig, andR. Loftus. 1980. Seasonal oxygen depletion in Chesapeake Bay.Estuaries 3: 242–247.CrossRefGoogle Scholar
  103. Turner, R. E. andN. N. Rabalais 1991. Changes in Mississippi water quality this century.Bioscience 41:140–147.CrossRefGoogle Scholar
  104. Tuttle, J. H., R. B. Jonas, andT. C. Malone. 1987. Origin, development and significance of Chesapeake Bay anoxia, p. 442–472.In S. K. Majumdar, L. W. Hall, Jr. and H. M. Austin (eds.). Contaminant Problems and Management of Living Chesapeake Bay Resources. The Pennsylvania Academy of Science. Phillipsburg, New Jersey.Google Scholar
  105. Ustach, J. F., W. W. Kirby-Smith, andR. T. Barber. 1986. Effect of watershed modification on a small coastal plain estuary, p. 177–192.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, New York.Google Scholar
  106. United States Environmental Protection Agency. 1983. Chesapeake Bay: A Framework for Action. Philadelphia, Pennsylvania.Google Scholar
  107. Valiela, I., G. Collins, J. Kremer, K. Lajtha, M. Geist, B. Seely, J. Brawley, andC. H. Sham. 1997. Nitrogen loading from coastal watersheds to receiving estuaries: New method and application.Ecological Applications 7:358–380.CrossRefGoogle Scholar
  108. Valiela, I. andJ. Costa. 1988. Eutrophication of Buttermilk Bay, a Cape Cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets.Environmental Management 12:539–551.CrossRefGoogle Scholar
  109. Verchot, L. V., E. C. Franklin, andJ. W. Gilliam 1997a. Nitrogen cycling in Piedmont vegetated filter zones: I. Surface soil processes.Journal of Environmental Quality 26:327–336.CrossRefGoogle Scholar
  110. Verchot, L. V., E. C. Franklin, andJ. W. Gilliam. 1997b. Nitrogen cycling in Piedmont vegetated filter zones: II. Subsurface nitrate removal.Journal of Environmental 26:337–347.Google Scholar
  111. Vernberg, F. J., W. B. Vernberg, E. Blood, A. Fortner, M. Fulton, H. McKellar, andW. Michener, G. Scott, T. Siewicki, andK. El Figi. 1992. Impact of urbanization on highsalinity estuaries in the southeastern United States.Netherlands Journal of Sea Research 30:239–248.CrossRefGoogle Scholar
  112. Weisberg, S. B., J. A. Ranasinghe, D. M. Dauer, L. C. Schaffner, R. J. Diaz, andJ. B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay.Estuaries 20:149–158.CrossRefGoogle Scholar
  113. Weiskel, P. K. andB. L. Howes. 1992. Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed.Environmental Science and Technology 26:352–360.CrossRefGoogle Scholar
  114. Wilber, W. G. andJ. V. Hunter. 1979. Aquatic transport of heavy metals in the urban environment.Water Resources Bulletin 13:721–734.Google Scholar

Sources of Unpublished Materials

  1. Latimer, R. W. National Health and Environmental Effects Research Laboratory, Narragansett, Rhode Island 02882.Google Scholar
  2. Michael, B. 580 Taylor Avenue, Annapolis, Maryland 21401.Google Scholar

Copyright information

© Estuarine Research Federation 2000

Authors and Affiliations

  • Daniel M. Dauer
    • 1
  • J. Ananda Ranasinghe
    • 2
  • Stephen B. Weisberg
    • 3
  1. 1.Department of Biological SciencesNorfolk
  2. 2.Versar, Inc.Columbia
  3. 3.Research ProjectSouthern California Coastal WaterWestminster

Personalised recommendations