, Volume 22, Issue 2, pp 345–357 | Cite as

Florida Bay: A history of recent ecological changes

  • James W. FourqureanEmail author
  • Michael B. Robblee


Florida Bay is a unique subtropical estuary at the southern tip of the Florida peninsula. Recent ecological changes (seagrass die-off, algal blooms, increased turbidity) to the Florida Bay ecosystem have focused the attention of the public, commercial interests, scientists, and resource managers on the factors influencing the structure and function of Florida Bay. Restoring Florida Bay to some historic condition is the goal of resource managers, but what is not clear is what an anthropogenically-unaltered Florida Bay would look like. While there is general consensus that human activities have contributed to the changes occurring in the Florida Bay ecosystem, a high degree of natural system variability has made elucidation of the links between human activity and Florida Bay dynamics difficult. Paleoecological analyses, examination of long-term datasets, and directed measurements of aspects of the ecology of Florida Bay all contribute to our understanding of the behavior of the bay, and allow quantification of the magnitude of the recent ecological changes with respect to historical variability of the system.


Algal Bloom Dissolve Inorganic Nitrogen Water Clarity Spiny Lobster Brown Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bohnsack, J. A., D. E. Harper, andD. B. McClellan. 1994. Fisheries trends from Monroe County, FL.Bulletin of Marine Science 54:982–1018.Google Scholar
  2. Bosence, D. 1989. Biogenic carbonate production in Florida Bay.Bulletin of Marine Science 44:419–433.Google Scholar
  3. Bowman, R., G. V. N. Powell, J. A. Hovis, N. C. Kline, andT. Wilmers. 1989. Variations in reproductive success between subpopulations of the osprey (Pandion halietus) in south Florida.Bulletin of Marine Science 44:245–250.Google Scholar
  4. Boyer, J. N., J. W. Fourqurean, andR. D. Jones, 1997. Spatial characterization of water quality in Florida Bay and White-water Bay by multivariate analyses: Zones of similar influence.Estuaries 20:743–758.CrossRefGoogle Scholar
  5. Boyer, J. N., J. W. Fourqurean, andR. D. Jones, 1999. Seasonal and long-term trends in water quality of Florida Bay (1989–1997).Estuaries 22:417–430.CrossRefGoogle Scholar
  6. Brewster-Wingard, G. L. andS. E. Ishman. 1999. Historical trends in salinity and substrate in central Florida Bay: Paleoecological reconstruction using modern analogue data.Estuaries 22:369–383.CrossRefGoogle Scholar
  7. Brownder, J. A., V. R. Restrepo, J. K. Rice, M. B. Robblee, andZ. Zein-Eldin. 1999. Environmental influences on potential recruitment of pink shrimp,Farfantepenaeus duorarum, from Florida Bay nursery grouds.Estuaries 22:484–499.CrossRefGoogle Scholar
  8. Butler, IV,M.J., J. H. Hunt, W. F. Herrnkind, M. J. Childress, R. Bertelsen, W. Sharp, T. Matthews, J. M. Field, andH. G. Marshall. 1995. Cascading disturbances in Florida Bay, USA: Cyanobacterial blooms, sponge mortality, and implications for juvenile spiny lobstersPanulirus argus.Marine Ecology Progress Series 129:119–125.CrossRefGoogle Scholar
  9. Cambridge, M. L., A. W. Chiffings, C. Brittan, L. Moore, andA. J. McComb. 1986. The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline.Aquatic Botany 24:269–285.CrossRefGoogle Scholar
  10. Carlson, P. R., L. A. Yarbro, andT. R. Barber. 1994. Relationship of sediment sulfide to mortality ofThalassia testudinum in Florida Bay.Bulletin of Marine Science 54:733–746.Google Scholar
  11. Costello, T. J. andD. M. Allen, 1966. Migrations and geographic distributions of pink shrimp,Penaeus duorarum, of the Tortugas and Sanibel grounds, Florida.Fishery Bulletin 65:449–459.Google Scholar
  12. Czerny, A. B. andK. H. Dunton, 1995. The effects of in situ light reduction on the growth of two subtropical seagrasses,Thalassia testudinum andHalodule wrightii.Estuaries 18:418–427.CrossRefGoogle Scholar
  13. Durako, M. D. andK. M. Kuss, 1994. Effects ofLabyrinthula infection on the photosynthetic capacity ofThalassia testudinum.Bulletin of Marine Science 54:727–732.Google Scholar
  14. Ehrhardt, N. M. andC. M. Legault. 1999. Pink shrimp recruitment variability as an indicator of Florida Bay dynamics.Estuaries 22:471–483.CrossRefGoogle Scholar
  15. Enos, P. andR. D. Perkins. 1979. Evolution of Florida Bay from island stratigraphy.Geological Society of America Bulletin 90:59–83.CrossRefGoogle Scholar
  16. Finucane, J. H. andA. Dragovich. 1959. Counts of red tide organisms, Gymnodinium breve, and associated oceanographic data from the Florida west coast. Special Science Report 298. United States Fish and Wildlife Service, Washington D.C.Google Scholar
  17. Fourqurean, J. W., R. D. Jones, andJ. C. Zieman. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: Inferences from spatial distributions.Estuarine, Coastal and Shelf Science 36:295–314.CrossRefGoogle Scholar
  18. Fourqurean, J. W. andJ. C. Zieman. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrassThalassia testudinum.Marine Ecology Progress Series 69:161–170.CrossRefGoogle Scholar
  19. Fourqurean, J. W., J. C. Zieman, andG. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from the C∶N∶P ratios of the dominant seagrassThalassia testudinum.Limnology and Oceanography 37:162–171.CrossRefGoogle Scholar
  20. Frankovich, T. A. andJ. C. Zieman 1994. Total epiphyte and epiphytic carbonate production onThalassia testudinum across Florida Bay.Bulletin of Marine Science 54:679–695.Google Scholar
  21. Giesen, W. B. J. T., M. M. van Katwijk, andC. Den Hartog. 1990. Eelgrass condition and the turbidity in the Dutch Wadden Sea.Aquatic Botany 37:71–85.CrossRefGoogle Scholar
  22. Hall, M. O., M. D. Durako, J. W. Fourqurean, andJ. C. Zieman. 1999. Decadal changes in seagrass distribution and abundance in Florida Bay.Estuaries 22:445–459.CrossRefGoogle Scholar
  23. Halley, R. B. andL. M. Roulier. 1999. Reconstructing the history of eastern and central Florida Bay using mollusk-shell isotope records.Estuaries 22:358–368.CrossRefGoogle Scholar
  24. Herrnkind, W. F., P. Jernakoff, andM. J. I. Butler. 1994. Puerulus and post-puerulus ecology, p. 213–229.In B. Phillips, S. Cobb, and J. Kittaka (eds.), Spiny Lobster Management. Blackwell Press, Oxford.Google Scholar
  25. Holmquist, J. G., G. V. N. Powell, andS. M. Sogard. 1989a. Decapod and stomatopod assemblages on a system of sea-grass-covered mud banks in Florida Bay.Marine Biology 100: 473–483.CrossRefGoogle Scholar
  26. Holmquist, J. G., G. V. N. Powell, andS. M. Sogard. 1989b. Decapod and stomatopod communities of seagrass-covered mud banks in Florida Bay: Inter- and intra-bank heterogeneity with special reference to isolated subenvironments.Bulletin of Marine Science 44:251–262.Google Scholar
  27. Holmquist, J. G., G. V. N. Powell, andS. M. Sogard. 1989c. Sediment, water level and water temperature characteristics of Florida Bay's grass-covered mud banks.Bulletin of Marine Science 44:348–364.Google Scholar
  28. Hudson, J. H., G. V. N. Powell, M. B. Robblee, andT. J. Smith, III. 1989. A 107-year-old coral from Florida Bay: barometer of natural and man-induced catastrophies?Bulletin of Marine Science 44:283–291.Google Scholar
  29. Hunt, J. H. 1994. Status of the fishery forPanulirus argus in Florida, p. 158–168.In B. Phillips, S. Cobb, and J. Kittaka (eds.), Spiny Lobster Management. Blackwell Press, Oxford.Google Scholar
  30. Iverson, R. L. andH. F. Bittaker. 1986. Seagrass distribution and abundance in eastern Gulf of Mexico coastal waters.Estuarine, Coastal and Shelf Science 22:577–602.CrossRefGoogle Scholar
  31. Jaap, W. 1985. An epidemic zooxanthellae expulsion during 1983 in the lower Florida Keys: Hyperthermic etiology. 5th International Coral Reef Symposium, Volume 6. Antenne du Museum National d'Histoire Naturelle et de l'Ecole Pratique des Hautes Etudes, Tahiti, French Polynesia.Google Scholar
  32. Lapointe, B. E. andM. W. Clark. 1992. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys.Estuaries 15:465–476.CrossRefGoogle Scholar
  33. Lapointe, B. E. andW. R. Matzie. 1996. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys.Estuaries 19:422–435.CrossRefGoogle Scholar
  34. Lapointe, B. E., J. D. O'Connell, andG. S. Garrett. 1990. Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys.Biogeochemistry 10:289–307.CrossRefGoogle Scholar
  35. Lavrentyev, P. J., H. A. Bootsma, T. H. Johengen, J. F. Cavaletto, andW. S. Gardner. 1998. Microbial plankton response to resource limitation: Insights from the community structure and seston stoichiometry in Florida Bay, USA.Marine Ecology Progress Series 165:45–57.CrossRefGoogle Scholar
  36. Lessios, H. A., P. W. Glynn, andD. R. Robertson. 1983. Mass mortalities of coral reef organisms.Science 222:715.CrossRefGoogle Scholar
  37. Lessios, H. A., D. R. Robertson, andJ. D. Cubit. 1984. Spread ofDiadema mass mortality through the Caribbean.Science 226: 335–337.CrossRefGoogle Scholar
  38. Light, S. S. andJ. W. Dinnen. 1994. Water control in the Everglades: A historical perspective, p. 47–84.In S. M. Davis and J. C. Ogden (eds.), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, Florida.Google Scholar
  39. Loftus, W. F. 1994. An annotated bibliography of the fishes of Everglades National Park. United States National Park Service, Homestead, Florida.Google Scholar
  40. Lorenz, J. J. 1999.. The response of fishes to physicochemical changes in the mangroves of northeast Florida Bay.Estuaries 22:500–517.CrossRefGoogle Scholar
  41. Matheson, R. E. J., D. K. Camp, S. M. Sogard, andK. A. Bjorgo. 1999. Changes in seagrass-associated fish and crustacean communities on Florida Bay mud banks: The effects of recent ecosystem changes?Estuaries 22:534–551.CrossRefGoogle Scholar
  42. Mazzotti, F. J. 1999. The American crocodile in Florida Bay.Estuaries 22:552–561.CrossRefGoogle Scholar
  43. Nance, J. M. 1994. A biological review of the Tortugas pink shrimp fishery through December 1993. Galveston Laboratory, Southeast Fisheries Science Center, National Marine Fisheries Service, Calveston, Texas.Google Scholar
  44. National Marine Fisheries Service. 1989. Research needs for south Florida fisheries and habitats. Draft of the proceedings of a workshop on the status of the Tortugas fishery, October 24–25. National Marine Fisheries Service Galveston Laboratory, Galveston, Texas.Google Scholar
  45. Nelsen, Jr.J. E. andR. N. Ginsburg. 1986. Calcium carbonate production by epibionts onThalassia in Florida Bay.Journal of Sedimentary Petrology 56:622–628.Google Scholar
  46. Onuf, C. P. 1996a. Biomass patterns in seagrass meadows of the Laguna Madre, Texas.Bulletin of Marine Science 58:404–420.Google Scholar
  47. Onuf, C. P. 1996b. Seagrass responses to long-term light reduction by brown tide in upper Laguna Madre, Texas: Distribution and biomass patterns.Marine Ecology Progress Series 138: 219–231.CrossRefGoogle Scholar
  48. Perkins, R. D. 1977. Pleistocene depositional framework of South Florida, p. 131–198.In P. Enos, and R. D. Perkins (eds.), Quaternary Sedimentation in South Florida: Geological Society of America Memoir 147, Volume 147. Geological Society of America, Boulder, Colorado.Google Scholar
  49. Phlips, E. J. andS. Badylak. 1996. Spatial variability in phytoplankton standing crop and composition in a shallow inner-shelf lagoon, Florida Bay, Florida.Bulletin of Marine Science 58: 203–216.Google Scholar
  50. Phlips, E. J., T. C. Lynch, andS. Badylak. 1995. Chlorophylla, tripton, color, and light availability in a shallow tropical inner-shelf lagoon, Florida Bay, USA.Marine Ecology Progress Series 127:223–234.CrossRefGoogle Scholar
  51. Pirc, H. 1985. Growth dynamics inPosidonia oceanica (L.) Delile. I. Seasonal changes of soluble carbohydrates, starch, free amino acids, nitrogen and organic anions in different parts of the plant.Marine Ecology 6:141–165.CrossRefGoogle Scholar
  52. Powell, A. B., D. E. Hoss, W. F. Hettler, D. S. Peters, andS. Wagner. 1989a. Abundance and distribution of ichthyoplankton in Florida Bay and adjacent waters.Bulletin of Marine Science 44:35–48.Google Scholar
  53. Powell, G. V. N., R. D. Bjork, J. C. Ogden, R. T. Paul, A. H. Powell, andW. B. Robertson, Jr. 1989b. Populations trends in some Florida Bay wading birds.Wilson Bulletin 101:436–457.Google Scholar
  54. Robblee, M. B., T. R. Barber, P. R. Carlson, M. J. Durako, J. W. Fourqurean, L. K. Muehlstein, D. Porter, L. A. Yarbro, R. T. Zieman, andJ. C. Zieman. 1991. Mass mortality of the tropical seagrassThalassia testudinum in Florida Bay (USA).Marine Ecology Progress Series 71:297–299.CrossRefGoogle Scholar
  55. Robblee, M. B. andW. J. DiDomenico. 1991. Seagrass die-off threatens ecology of florida Bay.Park Science 11:21–22.Google Scholar
  56. Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, andT. D. I. Fontaine. 1999. Phosphorus and nitrogen inputs to Florida Bay: The importance of the Everglades watershed.Estuaries 22:398–416.CrossRefGoogle Scholar
  57. Schomer, N. S. andR. D. Drew. 1982. An ecological characterization of the lower Everglades, Florida Bay and the Florida Keys. FWS/OBS-82/58.1. United States Fish and Wildlife Service, Office of Biological Services, Washington, D. C.Google Scholar
  58. Smith, III,T. J., J. H. Hudson, M. B. Robblee, G. V. N. Powell, andP. J. Isdale. 1989. Freshwater flow from the Everglades to Florida Bay: A historical reconstruction based on fluorescent banding in the coralSolenastrea bournoni.Bulletin of Marine Science 44:274–282.Google Scholar
  59. Socard, S. M., G. V. N. Powell, andJ. G. Holmquist. 1987. Epibenthic fish communities on Florida Bay banks: Relations with physical parameters and seagrass cover.Marine Ecology Progress Series 40:25–39.CrossRefGoogle Scholar
  60. Sogars, S. M., G. V. N. Powell, andJ. G. Holmquist. 1989. Spatial distribution and trends in abundance of fishes residing in seagrass meadows on Florida Bay mudbanks.Bulletin of Marine Science 44:179–199.Google Scholar
  61. Stark, W. A. 1968. A list of fishes from Alligator Reef, Florida, with comments on the nature of the Florida reef fish fauna.Undersea Biology 1:4–40.Google Scholar
  62. Stockman, K. W., R. N. Ginsburg, andE. A. Shinn. 1967. The production of lime mud by algae in south Florida.Journal of Sedimentary Petrology 37:633–648.Google Scholar
  63. Stumpf, R. P., M. L. Frayer, M. J. Durako, andJ. C. Brock. 1999. Variations in water clarity and bottom albedo in Florida Bay from 1985 to 1997.Estuaries 22:431–444.CrossRefGoogle Scholar
  64. Swart, P. K., G. F. Healy, R. E. Dodge, P. Kramer, J. H. Hudson, R. B. Halley, andM. B. Robblee. 1996. The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: A 160 year record of clirnatic and anthropogenic influence.Palaeogeography, Palaeoclimatology, Palaeoecology 123:219–237.CrossRefGoogle Scholar
  65. Swart, P. K., G. Healy, L. Greer, M. Lutz, A. Saied, D. Anderegg, R. E. Dodge, andD. Rudnick. 1999. The use of proxy chemical records in coral skeletons to ascertain past environmental conditions in Florida Bay.Estuaries 22:384–397.CrossRefGoogle Scholar
  66. Tabb, D. C., D. L. Dubrow, andR. B. Manning. 1962. The ecology of northern Florida Bay and adjacent estuaries. Technical Series #39, State of Florida Board of Conservation, Miami, Florida.Google Scholar
  67. Thayer, G. W. andA. J. Chester. 1989. Distribution and abundance of fishes among basin and channel habitats in Florida Bay.Bulletin of Marine Science 44:200–219.Google Scholar
  68. Thayer, G. W., A. B. Powell, andD. E. Hoss 1999. Composition in environmental conditions in Florida Bay.Estuaries 22: 518–533.CrossRefGoogle Scholar
  69. Tilmant, J. T. 1989. A history and an overview of recent trends in the fisheries of Florida Bay.Bulletin of Marine Science 44:3–22.Google Scholar
  70. Turney, W. J. andB. F. Perkins 1972. Molluscan distribution in Florida Bay. Sedimenta III. Rosenstial School of Marine and Atmospheric Sciences, University of Miami, Florida.Google Scholar
  71. Wanless, H. R. andM. G. Tagett. 1989. Origin, growth and evolution of carbonate mudbanks in Florida Bay.Bulletin of Marine Science 44:454–489.Google Scholar
  72. Williams, E. andL. Bunkley-Williams. 1990. The world-wide coral reef bleaching cycle and related sources of coral mortality.Atoll Research Bulletin 335:1–71.Google Scholar
  73. Williams, E., C. Goenaga, andV. Vicente. 1987. Mass bleachings on Atlantic coral reefs.Science 238:877–878.CrossRefGoogle Scholar
  74. Zieman, J. C., J. W. Fourqurean, andT. A. Frankovich. 1999. Seagrass die-off in Florida Bay (USA): Long-term trends in abundance and growth of turtle grass,Thalassia testudinum.Estuaries 22:460–470.CrossRefGoogle Scholar
  75. Zieman, J. C., J. W. Fourqurean, andR. L. Iverson. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay.Bulletin of Marine Science 44:292–311.Google Scholar
  76. Zieman, J. C., J. W. Fourqurean, M. B. Robblee, M. Durako, P. Carlson, L. Yarbro, andG. Powell. 1988. A catastrophic die-off of seagrasses in Florida Bay and Everglades National Park: Extent, effect and potential causes.Eos 69:1111.Google Scholar

Copyright information

© Estuarine Research Federation 1999

Authors and Affiliations

  1. 1.Department of Biological Sciences and Southeast Environmental Research ProgramFlorida International UniversityMiami
  2. 2.Florida Caribbean Science Center United States Geological Survey-Biological Resources DivisionFlorida International UniversityMiami

Personalised recommendations