, Volume 23, Issue 4, pp 488–508 | Cite as

Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores

  • Alexander W. Karlsen
  • Thomas M. Cronin
  • Scott E. Ishman
  • Debra A. Willard
  • Randy Kerhin
  • Charles W. Holmes
  • Marci Marot


Environmentally sensitive benthic foraminifera (protists) from Chesapeake Bay were used as bioindicators to estimate the timing and degree of changes in dissolved oxygen (DO) over the past five centuries. Living foraminifers from 19 surface samples and fossil assemblages from 11 sediment cores dated by210Pb,137Cs,14C, and pollen stratigraphy were analyzed from the tidal portions of the Patuxent, Potomac, and Choptank Rivers and the main channel of the Chesapeake Bay.Ammonia parkinsoniana, a facultative anaerobe tolerant of periodic anoxic conditions, comprises an average of 74% of modern Chesapeake foraminiferal assemblages (DO-0.47 and 1.72 ml l−1) compared to 0% to 15% of assemblages collected in the 1960s. Paleoecological analyses show thatA. parkinsoniana was absent prior to the late 17th century, increased to 10–25% relative frequency between approximately 1670–1720 and 1810–1900, and became the dominant (60–90%) benthic formaniferal species in channel environments beginning in the early 1970s. Since the 1970s, deformed tests ofA. parkinsoniana occur in all cores (10–20% ofAmmonia), suggesting unprecedented stressful benthic conditions. These cores indicate that prior to the late 17th century, there was limited oxygen depletion. During the past 200 years, decadal scale variability in oxygen depletion has occurred, as dysoxic (DO=0.1–1.0 ml l−1), perhaps short-term anoxic (DO<0.1 ml l−1) conditions developed. The most extensive (spatially and temporally) anoxic conditions were reached during the 1970s. Over decadal timescales, DO variability seems to be linked closely to climatological factors influencing river discharge; the unprecedented anoxia since the early 1970s is attributed mainly to high freshwater flow and to an increase in nutrient concentrations from the watershed.


Foraminifera Benthic Foraminifera Oxygen Depletion Foraminiferal Assemblage Gravity Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alve, E. 1991a. Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sorfjord, western Norway.Journal of Foraminiferal Research 21:1–19.Google Scholar
  2. Alve, E. 1991b. Foraminifera, climatic change, and pollution: A study of late Holocene sediments in Drammensfjord, Southeast Norway.The Holocene 1:243–261.CrossRefGoogle Scholar
  3. Alve, E. andJ. W. Murray. 1995. Benthic foraminiferal distribution and abundance changes in Skagerrak surface sediments: 1937 (Hoglund) and 1992/1993 data compared.Marine Micropaleontology 25:269–288.CrossRefGoogle Scholar
  4. Bernhard, J. M. 1996. Microaerophilic and facultative anaerobic benthic foraminifera: A review of experimental and ultrastructural evidence.Revue de Paleobiologie 15:261–275.Google Scholar
  5. Bernhard, J. M. in press. Distinguishing live from dead foraminifera: Methods review and proper applications.In J. J. Lee (ed.), Biology of Foraminifers. Volume II. Micropaleontology Press, New York.Google Scholar
  6. Bernhard, J. M. andB. K. Sen Gupta. 1999. Foraminifera of oxygen-depleted environments, p. 201–216.In B. K. Sen Gupta (ed.), Modern Foraminifera. Kluwer Academic, Boston, Massachusetts.Google Scholar
  7. Boynton, W. andM. Kemp. 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient.Marine Ecology Progress Series 23:45–55.CrossRefGoogle Scholar
  8. Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs, transformations, and transport of nitrogen and phosphorous in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.CrossRefGoogle Scholar
  9. Bradshaw, J. S. 1957. Laboratory studies on the rate of growth of the foraminifer “Steblus beccarii” (Linne) var.tepida (Cushman).Journal of Paleontology 31:1138–1147.Google Scholar
  10. Bradshaw, J. S. 1961. Laboratory experiments on the ecology of foraminifera.Cushman Foundation for Foraminiferal Research Contributions 12:87–106.Google Scholar
  11. Brooks, A. L. 1967. Standing crop, vertical distribution, and morphometrics ofAmmonia beccaii (Linne).Limnology and Oceanography 12:667–684.CrossRefGoogle Scholar
  12. Brush, G. A. 1984. Stratigraphic evidence of eutrophication in an estuary.Water Resources Research 20:531–541.CrossRefGoogle Scholar
  13. Brush, G. S., E. A. Martin, R. S. DeFries, andC. A. Rice. 1982. Comparison of210Pb and pollen methods for determining rates of estuarine sediment accumulation.Quaternary Research 18:196–217.CrossRefGoogle Scholar
  14. Buzas, M. A. 1969. Foraminiferal species densities and environmental variables in an estuary.Limnology and Oceanography 14:411–422.Google Scholar
  15. Buzas, M. A. 1974. Vertical distribution ofAmmobaculites in the Rhode River, Maryland.Journal of Foraminiferal Research 4:144–147.Google Scholar
  16. Buzas, M. A. 1990. Another look at confidence limits for species proportions.Journal of Paleontology 64:842–843.Google Scholar
  17. Cook, E. R. andG. C. Jacoby. 1983. Potomac River discharge since 1730 as reconstructed by tree rings.Journal of Climate and Applied Meteorology 22:1659–1672.CrossRefGoogle Scholar
  18. Cooper, S. R. 1995. Chesapeake Bay watershed historical land use: Impact on water quality and diatom communities.Ecological Applications 5:703–723.CrossRefGoogle Scholar
  19. Cooper, S. R. andG. S. Brush. 1991. Long-term history of Chesapeake Bay anoxia.Science 254:992–996.CrossRefGoogle Scholar
  20. Cooper, S. R. andG. S. Brush. 1993. A 2,500 year history of anoxia and eutrophication in Chesapeake Bay.Estuaries 16: 617–626.CrossRefGoogle Scholar
  21. Cornwell, J. C., D. J. Conley, M. Owens, andJ. C. Stephenson. 1996. A sediment chronology of the eutrophication of Chesapeake Bay.Estuaries 19:488–499.CrossRefGoogle Scholar
  22. Cronin, T. M., S. M. Colman, D. Willard, R. Kerhin, C. Holmes, andS. Phillips. 1999a. Research Examines Chesapeake Bay Sedimentary Record of Holocene Climatic Variability and Human Ecosystem Disturbance.EOS, Transactions, American Geophysical Union 80:23 and 240–241.Google Scholar
  23. Cronin, T. M., R. S. Wagner, and M. Slattery (eds.). 1999b. Microfossils from Chesapeake Bay Sediments: Illustrations and Species Database, U.S. Geological Survey Open-file Report 99-45. Reston, Virginia.Google Scholar
  24. Cronin, T. M., D. A. Willard, R. T. Kerhin, A. Karlsen, C. Holmes, S. E. Ishman, S. Verardo, J. McGeehin, S. Colman, andA. Zimmerman. 2000. Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments.Geology 28:3–6.CrossRefGoogle Scholar
  25. Debenay, J.-P., E. Beneteau, J. Zhang, V. Stouff, E. Geslin, F. Redois, andM. Fernandez-Gonzalez. 1998.Ammonia beccarii andAmmonia tepida (foraminifera): Morphofunctional arguments for their distinction.Marine Micropaleontology 34:235–244.CrossRefGoogle Scholar
  26. Ellison, R. L. 1972. Ammobaculites, a foraminiferal proprietor of Chesapeake Bay estuaries.Geological Society of America Bulletin 133:247–262.Google Scholar
  27. Ellison, R. L., R. Broome, andR. Ogilvie. 1986. Foraminiferal response to trace metal contamination in the Patapsco River and Baltimore Harbour, Maryland.Marine Pollution Bulletin 17:419–423.CrossRefGoogle Scholar
  28. Ellison, R. L. andM. M. Nichols. 1970. Ecology of foraminifera from the Rappahannock Estuary, Virginia.Cushman Foundation for Foraminiferal Research Contributions 21:1–17.Google Scholar
  29. Ellison, R. L. and M. M. Nichols. 1976. Modern and Holocene foraminifera in the Chesapeake Bay region, p. 131–151.In C. T. Schafer and B. R. Pelletier (eds.), Ist International Symposium on Benthonic Foraminifera of Continental Margins, Part A. Maritime Sediments Special Publication 1. Halifax, Nova Scotia.Google Scholar
  30. Ellison, R. L., M. M. Nichols, and J. Hughes. 1965. Distribution of Recent Foraminifera in the Rappahannock River Estuary, Virginia Institute of Marine Science Special Science Report No. 47:1–35. Gloucester Point, Virginia.Google Scholar
  31. Fenchel, T., andB. J. Finlay. 1995. Ecology and Evolution in Anoxic Worlds, Oxford University Press, Oxford, England.Google Scholar
  32. Flynn, W. W. 1968. The determination of low levels of polonium-210 in environmental materials.Analytica Chimica Acta 43: 221–227.CrossRefGoogle Scholar
  33. Geslin, E., J.-P. Debenay, andM. Lesourd. 1998. Abnormal wall textures and test deformation inAmmonia (hyaline foraminifera).Journal of Foraminiferal Research 28:148–156.Google Scholar
  34. Goldberg, E. D., V. Hodge, M. Koide, J. Griffin, E. Gamble, O. P. Bricker, G. Matisoff, G. R. Holdren, Jr., andR. Braun. 1978. A pollution history of Chesapeake Bay.Geochimica et Cosmochimica Acta 42:1413–1425.CrossRefGoogle Scholar
  35. Gray, J. S. andM. I. Abdullah. 1996. Are there negative trends in oxygen saturation along the Norwegian Skagerrak coast?Limnology and Oceanography 41:810–812.Google Scholar
  36. Holzmann, M. andJ. Pawlowski. 1997. Molecular, morphological and ecological evidence for species recognition inAmmonia (Foraminifera).Journal of Foraminiferal Research 27:311–318.Google Scholar
  37. Holzmann, M., W. Piller, andJ. Pawlowski. 1996. Sequence variations in large-subunit ribosomal RNA gene of Ammonia (foraminifer, Protozoa) and their evolutionary implications.Journal of Molecular Evolution 43:145–151.CrossRefGoogle Scholar
  38. Jaworski, N. A., R. W. Howarth, andL. J. Hetling. 1997. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States.Environmental Science and Technology 31:1995–2004.CrossRefGoogle Scholar
  39. Johannessen, T. andE. Dahl. 1996. Declines in oxygen concentrations along the Norwegian Skagerrak coast, 1927–1993: A signal of ecosystem changes due to eutrophication.Limnology and Oceanography 41:766–778.CrossRefGoogle Scholar
  40. Jorissen, E. J. 1988. Benthic foraminifera from the Adriatic Sea: Principles of phenotypic variation.Utrecht Micropaleontological Bulletin 37:7–139.Google Scholar
  41. Kerhin, R. T., C. Williams, and T. M. Cronin. 1998. Lithologic Descriptions of Piston cores from Chesapeake Bay, Maryland. U.S. Geological Survey Open-File Report 98-787. Reston, Virginia.Google Scholar
  42. Kitazato, H. 1994. Foraminiferal microhabitats in four marine environments around Japan.Marine Micropaleontology 24:29–41.CrossRefGoogle Scholar
  43. Malone, T. C. 1991. River flow, phytoplankton production and oxygen depletion in Chesapeake Bay, p. 83–93.In R. V. Tyson and T. H. Pearson (eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society Special Paper 58. London.Google Scholar
  44. Malone, T. C. 1992. Effects of water column processes on dissolved oxygen, nutrients, phytoplankton and zooplankton, p. 61–112.In D. E. Smith, M. Leffler, and G. Mackiernan (eds.). Oxygen Dynamics in the Chesapeake Bay. Maryland Sea Grant. College Park, Maryland.Google Scholar
  45. Moodley, L. andC. Hess. 1992. Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations.Biological Bulletin 183:94–98.CrossRefGoogle Scholar
  46. Nagy, J. andE. Alve. 1987. Temporal changes in foraminiferal faunas and impact of pollution in Sandebukta, Oslo Fjord.Marine Micropaleontology 12:109–128.CrossRefGoogle Scholar
  47. Najjar, R. 1999. The water balance of the Susquehanna River Basin and its response to climate change.Journal of Hydrology 219:7–19.CrossRefGoogle Scholar
  48. Newcombe, C. L. andW. A. Horne. 1938. Oxygen-poor waters of the Chesapeake Bay.Science 88:80–81.CrossRefGoogle Scholar
  49. Nichols, M. M. andW. Norton. 1969. Foraminiferal populations in coastal plain estuary.Palaeogeography, Palaeoclimatology, Palaeoecology 6:197–213.CrossRefGoogle Scholar
  50. Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, andW. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, significance.Science 223:22–27.CrossRefGoogle Scholar
  51. Patterson, R. T. andE. Fishbein. 1989. Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research.Journal of Paleontology 63:245–248.Google Scholar
  52. Pawlowski, J., I. Bolivar, J. Farhni, andL. Zaninetti. 1995. DNA analysis of “Ammonia beccarii” morphotypes: One or more species?Marine Micropaleontology 26:171–178.CrossRefGoogle Scholar
  53. Poag, C. W. 1978. Paired foraminiferal ecophenotypes in Gulf Coast estuaries: Ecological and paleoecological implications.Transactions Gulf Coast Association of Geological Societies 28:395–421.Google Scholar
  54. Rabalais, N. N., W. J. Weisman, andR. E. Turner, 1994. Comparison of continuous records of near-bottom dissolved oxygen from the hypoxia zone along the Louisiana coast.Estuaries 17:850–861.CrossRefGoogle Scholar
  55. Schnitker, D. 1974. Ecotypic variation ofAmmonia becarii (Linne).Journal of Foraminiferal Research 4:216–223.CrossRefGoogle Scholar
  56. Seliger, H. H. and J. A. Boggs. 1988. Long term pattern of anoxia in the Chesapeake Bay, p. 570–583.In M. P. Lynch and E. C. Krome (eds.), Understanding the Estuary: Advances in Chesapeake Bay Research. Chesapeake Research Consortium Publication No. 129. Baltimore, Maryland.Google Scholar
  57. Seliger, H. H., J. A. Boggs, andW. H. Biggley. 1985. Catastrophic anoxia in the Chesapeake Bay in 1984.Science 228: 70–75.CrossRefGoogle Scholar
  58. Sen Gupta, B., R. E. Turner, andH. H. Rabalais. 1996. Seasonal oxygen depletion in continental-shelf waters of Louisiana: Historical record of benthic foraminifers.Geology 24:227–230.CrossRefGoogle Scholar
  59. Sharifi, A. R., I. W. Croudace, andR. L. Austin. 1991. Benthic foraminiferids as pollution indicators in Southampton water, southern England, U.K.Journal of Micropaleontology 10:109–113.Google Scholar
  60. Stahle, D. W., M. K. Cleaveland, D. B. Blanton, M. D. Therrell, andD. A. Gay. 1998. The lost colony and Jamestown drought.Science 280:564–567.CrossRefGoogle Scholar
  61. Stuiver, M. andP. J. Reimer. 1993. Extended14C data base and revised CALIB 3.014C age calibration program.Radiocarbon 35:215–230.Google Scholar
  62. Taft, J. L., W. R. Taylor, E. O. Hartwig, andR. Loftus. 1980. Seasonal oxygen depletion in Chesapeake Bay.Estuaries 3:242–247.CrossRefGoogle Scholar
  63. Tyler, M. A. 1986. Flow-induced variation in transport and deposition pathways in the Chesapeake Bay: The effect on phytoplankton dominance and anoxia, p. 161–175.In D. A. Wolfe (ed.), Estuarine Variability, Academic Press, Orlando.Google Scholar
  64. Walton, W. R. andB. J. Sloan. 1990. The genus Ammonia (Brunnich, 1772): Its geographic distribution and morphologic variability.Journal of Foraminiferal Research 20:128–156.Google Scholar
  65. Yanko, V., M. Ahmad, andM. Kaminski. 1998. Morphological deformities of benthic foraminiferal tests in response to pollution in heavy metals: Implications for pollution monitoring.Journal of Foraminiferal Research 28:177–200.Google Scholar
  66. Yanko, V., J. Kronfeld, andA. Flexer. 1994. Response of benthic foraminifera to various pollution sources: Implications for pollution monitoring.Journal of Foraminiferal Research 24: 1–17.Google Scholar

Sources of Unpublished Materials

  1. Kitazato, H. personal communication. Institute of Geosciences, Shizuoka University, Shizuoka 422 Japan.Google Scholar
  2. Jaworski, N. personal communication. Retired from U.S. Environmental Protection Agency, Office of Research and Development, Narragansett, Rhode Island 02882.Google Scholar

Copyright information

© Estuarine Research Federation 2000

Authors and Affiliations

  • Alexander W. Karlsen
    • 1
  • Thomas M. Cronin
    • 1
  • Scott E. Ishman
    • 1
  • Debra A. Willard
    • 1
  • Randy Kerhin
    • 2
  • Charles W. Holmes
    • 3
  • Marci Marot
    • 3
  1. 1.U.S. Geological SurveyReston
  2. 2.Maryland Geological SurveyBaltimore
  3. 3.U.S. Geological SurveySt. Petersburg

Personalised recommendations