, Volume 24, Issue 6, pp 1015–1028 | Cite as

The post-depositional reactivity of iron and managanese in the sediments of a macrotidal estuarine system

  • B. OuddaneEmail author
  • D. Boust
  • E. Martin
  • J. C. Fischer
  • M. Wartel


Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).


Electron Spin Resonance Sulfate Reduction Early Diagenesis Acid Volatile Sulfide Total Inorganic Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aller, R. C. 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. II: Fe and Mn.Advances in Geophysics 22:351–415.Google Scholar
  2. Aller, R. C. 1994. The sedimentary Mn cycle in Long Island sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balance.Journal of Marine Science 52:252–295.Google Scholar
  3. Aller, R. C. andP. D. Rude. 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments.Geochimica et Cosmochimica Acta 52:751–765.CrossRefGoogle Scholar
  4. Anderson, L. G., P. O. J. Hall, A. Iverfeldt, M. M. Rutgers van der Loeff, B. Sundby, andS. F. G. Westerlund. 1986. Benthic respiration measured by total carbonate production.Limnology and Oceanography 31:319–329.Google Scholar
  5. Avoine, J. 1981. L’estuaire de la Seine: Sédiments et dynamique sédimentaire. Thèse Universite de Caen, France.Google Scholar
  6. Avoine, J. 1986. Sediment exchanges, between the Seine estuary and its adjacent shelf.Journal of the Geological Society 144:135–148.CrossRefGoogle Scholar
  7. Bakker, J. E. andW. Helder. 1993. Skagerrak (northeastern North Sea) oxygen microprofiles and porewater chemistry in sediments.Marine Geology 111:299–321.CrossRefGoogle Scholar
  8. Berner, R. A. 1964. Stability field of, iron minerals in anaerobic marine sediments.Journal of Geology 72:826–834.CrossRefGoogle Scholar
  9. Berner, R. A. 1971. Principles of Chemical Sedimentology., McGraw Hill, New York.Google Scholar
  10. Berner, R. A. 1978. Sulfate reduction and the rate of deposition of marine sediments.Earth and Planetary Science Letters 37:492–498.CrossRefGoogle Scholar
  11. Berner, R. A. 1980. Early Diagenesis, A Theoretical Approach. Princeton Series in Geochemistry. Heinrich, Holland.Google Scholar
  12. Berner, R. A. andJ. T. Westrich. 1985. Bioturbation and the early diagenesis of carbon and sulfur.American Journal of Science 285:193–206.Google Scholar
  13. Boudreau, B. P. andD. E. Canfield. 1993. A comparison of closed an open system models for pore water pH and calcitesaturation state.Geochimica et Cosmochimica Acta 57:317–334.CrossRefGoogle Scholar
  14. Boughriet, A., B. Ouddane, andM. Wartel. 1992. Electron spin resonance of Mn compounds and free radicals in particles from the Seine River and its estuary.Marine Chemistry 37: 149–169.CrossRefGoogle Scholar
  15. Boust, D. 1996. Etude de la pénétration des particules marines dans l’estuaire de la Seine par l’analyse des radionucléides naturels et artificiels. Programme Scientifique Seine Aval; Thème Dynamique des Contaminants. Rapport SERIE 97/008 (P). Rouen, France.Google Scholar
  16. Boust, D., J. C. Fischer, B. Ouddane, F. Pett, andM. Wartel. 1999. Le fer et le manganèse dans l’estuarie de la Seine: Réactivités et recyclages. Les fascicules de Seine Aval. Ed. IFREMER, Brest, France.Google Scholar
  17. Bricker, O. P. andB. N. Troup. 1975. Sediment-water exchange in Chesapeake Bay, p. 3–27.In L. E. Cronin (ed.), Estuarine Research, Vol. 1 Academic Press, New York.Google Scholar
  18. Burdige, D. J. 1993. The biogeochemistry of managanese and iron reduction in marine sediments.Earth Science Reviews 35: 249–289.CrossRefGoogle Scholar
  19. Byrne, R. H., L. R. Kump, andK. J. Cantrell. 1988. The influence of temperature and pH on trace metal speciation in seawater.Marine Chemistry 25:163–181.CrossRefGoogle Scholar
  20. Canfield, D. E. 1994. Factors influencing organic carbon preservation in marine sediments.Chemical Geology 114:315–329.CrossRefGoogle Scholar
  21. Canfield, D. E., R. Raiswell, andS. Bottreel. 1992. The reactivity of sedimentary iron minerals towards sulfide.American Journal of Science 292:659–683.Google Scholar
  22. Canfield, D. E., B. Thamdrup, andJ. W. Hansen. 1993. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction and sulfate reduction.Geochimica et Cosmochimica Acta 57:3867–3883.CrossRefGoogle Scholar
  23. Cornwell, J. C. andJ. W. Morse. 1987. The characterization of iron sulfide minerals in anoxic marine sediments.Marine Chemistry 22:193–206.CrossRefGoogle Scholar
  24. De Lange, G. J. 1986. Early diagenetic reactions in interbedded pelagic and turbiditic sediments in the Nares Abyssal Plain (Western North Atlantic): Consequences for the composition of sediment and interstitial water.Geochimica et Cosmochimica Acta 50:2543–2561.CrossRefGoogle Scholar
  25. Dimmock, P. W., P. Warwick, andR. A. Robbins. 1995. Approaches to predicting stability constants.Analyst, 120:2159–2170.CrossRefGoogle Scholar
  26. Dos Santos, A. M. andW. Stumm. 1992. The reductive distribution of iron (III)(hydr)oxides by hydrogen sulfide.Langmuir 8:1671–1676.CrossRefGoogle Scholar
  27. Dupont, J. P., R. Lafite, M. F. Huault, P. Hommeril, andR. Meyer. 1996. Continental/marine ration changes in suspended and settled matter across a macrotidal estuary (the Seine estuary, northwestern France).Marine Geology 120:27–40.CrossRefGoogle Scholar
  28. El Ghobary, H. 1983. Diagénèse précoce en milieu littoral et mobilité des éléments métalliques. Thèse de Doctorat d’Etat, Université de Bordeaux, France.Google Scholar
  29. Elderfield H., R. J. McCaffrey, N. Luedtke, M. Bender, andV. W. Truesdale. 1981. Chemical diagenesis in Narrangansett Bay sediments.American Journal Science 281:1021–1055.Google Scholar
  30. Emerson, S. 1976. Early diagenesis in anaerobic lake sediments: Chemical equilibria in interstitial waters.Geochimica et Cosmochimica Acta 40:925–934.CrossRefGoogle Scholar
  31. Emerson, S., R. Jahnke, M. Bender, P. Froelich, G. Klinkhammer, C. Bowser, andG. Setlock. 1980. Early diagenesis in sediments from the eastern equatorial pacific. 1 Pore water nutrient and carbonates results.Earth and Planetary Science Letters 44:57–80.CrossRefGoogle Scholar
  32. Emerson, S. andG. Widmer. 1978. Early diagenesis in anaerobic lake sediment II. Thermodynamic and kinetic factors controlling the formation of iron phosphate.Geochimica et Cosmochimica Acta 42:1307–1316.CrossRefGoogle Scholar
  33. Enüstün, B. V. andJ. Turkevich. 1960. Solubility of fine particles of strontium sulfate.American Chemical Society Journal 82:4502–4509.CrossRefGoogle Scholar
  34. Franklin, M. L. andJ. W. Morse. 1983. The interaction of manganese (II) with the surface of calcite in dilute solutions and seawater.Marine Chemistry 12:241–254.CrossRefGoogle Scholar
  35. Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedke, G. R. Heath, D. Gullen, P. Dauphin, D. Hammond, B. Hartman, andV. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis.Geochimica et Cosmochimica Acta 43:1075–1090.CrossRefGoogle Scholar
  36. Garrels, R. M., M. E. Thompson, andR. Siever. 1960. Stability of some carbonates at 25°C and one atmosphere total pressure.American Journal of Science 258:402–418.Google Scholar
  37. Gieskes, J. M. 1981. Deep-sea drilling interstitial water studies: Implications for chemical alteration of the oceanic crust, layers I and II. SPEM Spec. Publ. 32:149–167. Tulsa, Oklahoma.Google Scholar
  38. Gonzalez, J. L. 1992. Comportement du cadmium et du mercure lors de la diagenèse précoce et flux à l’interface eausédiment en zone littorale. Thèse de Doctorat de ɛème cycle, Université de Bordeaux 1, France.Google Scholar
  39. Heijs, S. K., H. M. Jonkers, H. van Gemerden, B. E. M. Schaub, andL. J. Stal. 1999. The buffering capacity towards free sulfide in sediments of a coastal lagoon (Bassin d’Arcachon, France)—The relative importance of chemical and biological processes.Estuarine, Coastal and Shelf Science 49:21–35.CrossRefGoogle Scholar
  40. Holdren, Jr.,G. R., O. P. Bricker III, andG. Matissof. 1975. A model for the control of dissolved manganese in the interstitial water of the Chesapeake Bay, p. 18:364–381.In T. M. Church (ed.), Marine Chemistry in the Coastal Environment. ACS Symposium Series. American Chemical Society, Washington, D.C.Google Scholar
  41. Hong, J., W. Calmano, andU. Förstner. 1995. Trace Elements in Natural Waters, Brit Salbu and Eiliv Steinnes (eds.), CRC Press, Boca Raton, Florida.Google Scholar
  42. Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments.Biogeochemistry 1:5–27.CrossRefGoogle Scholar
  43. Huerta-Diaz, M. A. andJ. W. Morse. 1992. Pyritisation of anoxic marine sediments.Geochimica Cosmochimica Acta 56:2681–2702.CrossRefGoogle Scholar
  44. Huerta-Diaz, M. A., A. Tessier, andR. Carignan. 1998. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments.Applied Geochemistry 13:213–233.CrossRefGoogle Scholar
  45. Hulth, S., T. H. Blackburn, andP. O. J. Hall. 1994. Artic sediments (Svalbard): Cosumption and microdistribution of oxygen.Marine Chemistry 46:293–316.CrossRefGoogle Scholar
  46. Hurtgen, M. T., T. W. Lyons, E. D. Ingall, andA. M. Cruse. 1999. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transfor mations; examples from Effingham Inlet, Oraca Basin, and the Black Sea.American Journal of Science 299:7–9.CrossRefGoogle Scholar
  47. Jacobs, L. andS. Emerson. 1982. Trace metla solubility in anoxic fjord.Earth and Planetary Science Letters 60:237–252.CrossRefGoogle Scholar
  48. Johnson, K. S. 1982. Solubility of rhodochrosite (MnCO3) in water and seawater.Geochimica et Cosmochimica Acta 46:1805–1809.CrossRefGoogle Scholar
  49. Kestern, M. andU. Förstner. 1990. Speciation of trace elements in sediments, p. 245–318.In G. E. Batley (ed.), Trace Element Speciation: Analytical Methods and Problems. CRC Press, Boca Raton, Florida.Google Scholar
  50. King, G. M. 1990. Effects of added managanic and ferric oxides on sulfate reduction and sulfide oxidation in intertidal sediments.FEMS Microbiological Ecology 59:39–54.Google Scholar
  51. Klinkhammer, G. P. 1980. Early diagenesis in sediments from the eastern equatorial pacific. II. Pore water metal results.Earth and Planetary Science Letters 49:265–270.CrossRefGoogle Scholar
  52. Lapp, B. andW. Balzer. 1993. Early diagenesis of trace metals used as indicator of past productivity changes in coastal sediments.Geochimica et Cosmochimica Acta 57:4639–4652.CrossRefGoogle Scholar
  53. Li, Y. H., J. Bischoff, andG. Mathieu. 1969. The migration of manganese in the Arctic basin sediment.Earth and Planetary Science Letters 7:265–270.CrossRefGoogle Scholar
  54. Marin, P. 1988. Le fer et le manganèse dans le système estuaire de la Seine—Baie de Seine. Thèse de doctorat de ɛème cycle, Université de Caen, France.Google Scholar
  55. Martin, J. M., P. Nirel, andA. J. Thomas. 1987. Sequential extraction techniques: Promises and Problems.Marine Chemistry 22:313–341.CrossRefGoogle Scholar
  56. Middelburg, J. J., G. J. De Lange, andC. H. Van der Weijden. 1987. Manganese solubility control in marine pore waters.Geochimica et Cosmochimica Acta 51:759–763.CrossRefGoogle Scholar
  57. Morel, F. M. M. 1983. Principles of, Aquatic Chemistry. Wiley-Interscience Publication. John Wiley and Sons, New York.Google Scholar
  58. Morford, L. andS. Emerson. 1999. The geochemistry of redox trace metals in sediments.Geochimica et Cosmochimica Acta 63: 1735–1750.CrossRefGoogle Scholar
  59. Morgan, J. J. 1967. Chemical equilibria and kinetic properties of manganese in natural waters, p. 561–622.In S. D. Faust and J. V. Hunter (eds.), Principles and Application of Water Chemistry. John Wiley, New York.Google Scholar
  60. Murray, J. W., V. Grundmanis, andW. M. Smethie, Jr. 1978. Interstitial water chemistry in sediments of Saanich Inlet.Geochimica et Cosmochimica Acta 42:1011–1026.CrossRefGoogle Scholar
  61. Nembrini, G. P., J. A. Capobianco, M. Viel, andA. F. Williams. 1983. A Mössbauer and chemical study of the formation of vivianite in sediments of Lago Maggiore (Italy).Geochimica et Cosmochimica Acta 47:1459–1464.CrossRefGoogle Scholar
  62. Nirel, P. andF. M. M. Morel. 1990. Pittfalls of sequential extractions.Water Research 24:1055–1058.CrossRefGoogle Scholar
  63. Nriagu, J. O. 1972. Stability of vivianite and ion pair formation in the system Fe2(PO)4-H3PO4-H2O.Geochimica et Cosmochimica Acta 36:459–470.CrossRefGoogle Scholar
  64. Oenema, O. 1990. Pyrite accumulation in salt marshes in the Eastern Scheldt, southwest Netherlands.Biogeochemistry 9:75–98.CrossRefGoogle Scholar
  65. Ouddane, B., E. Martin, A. Boughriet, J. C. Fischer, andM. Wartel. 1997. Speciation of dissolved and particulate manganese in the seine River estuary.Marine Chemistry 58:189–201.CrossRefGoogle Scholar
  66. Ouddane, B., M. Skiker, J. C. Fischer, andM. Wartel. 1999. Distribution of iron and manganese in the Seine estuary: Approach with experimental laboratory mixing.Journal of Environmental Monitoring 1:489–496.CrossRefGoogle Scholar
  67. Pedersen, T. F. andN. B. Price. 1982. The geochemistry of manganese carbonate in Panama Basin sediments.Geochimica et Cosmochimica Acta 46:49.CrossRefGoogle Scholar
  68. Pingitore, Jr.,N. E., M. P. Eastman, M. Sandidge, K. Oden, andB. Feiha. 1988. The coprecipitation of manganese(II) with calcite: An experimental study.Marine Chemistry 25:107–120.CrossRefGoogle Scholar
  69. Postma, D. 1981. Formation of siderite and vivianite and the pore water composition of a recent bog sediment in Denmark.Chemical Geology 31:225–244.CrossRefGoogle Scholar
  70. Postma, D. 1981. Pyrite and siderite formation in brackish and freshwater swamp sediments.American Journal of Science 282: 1151–1183.Google Scholar
  71. Pyzik, A. J. andS. E. Sommer. 1981. Sedimentary iron monosulfides: Kinetics and mechanism of formation.Geochimica et Cosmochimica Acta 45:687–698.CrossRefGoogle Scholar
  72. Rajendran, A., M. D. Kumar, andJ. F. Bakker. 1992. Control of manganese and iron in Skagerrak (Northeastern North sea).Chemical Geology 98:111–129.CrossRefGoogle Scholar
  73. Robbins, J. A. andE. Callender. 1975. Diagenesis of manganese in Lake Michigan sediments.American Journal of Science 275:512–533.Google Scholar
  74. Sawlan, J. J. andJ. W. Murray. 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments.Earth and Planetary Science Letters 64:213–230.CrossRefGoogle Scholar
  75. Schercher, W. D. andD. C. McAvoy. 1992. MINEQL+−A software environment for chemical equilibrium modeling.Computers, Environment and Urban Systems 16:65–76.CrossRefGoogle Scholar
  76. Shaw, T. J., E. R. Sholkovitz, andG. Klinkhammer. 1994. Redox dynamics in the Chesapeake Bay: The effect on sediment/water uranium exchange.Geochimica et Cosmochimica Acta 58:2985–2995.CrossRefGoogle Scholar
  77. Singer, P. C. andW. Stumm. 1970. Solubility of ferrous iron in carbonate bearing waters.Journal of American Water Works Association 62:198–202.Google Scholar
  78. Skiker, M. 1989. Comportement du manganèse dans les eaux marines du détroit du Pas de Calais. Thèse de Doctorat de Sème cycle, Université de Lille 1, France.Google Scholar
  79. Skowronek, F., J. Sageman, F. Stenzel, andH. D. Schulz. 1994. Evolution of heavy-metal profiles in Weser estuary sediments, Germany.Environmental Geology 24:223–232.CrossRefGoogle Scholar
  80. Song Y. andG. Muller. 1995. Biogeochemical cycling of nutrients and trace metals in anoxic freshwater sediments of the Neckar River, Germany.Marine Freshwater Research 46:237–243.Google Scholar
  81. Song, Y. andG. Muller. 1999. Sediment-Water Interactions in Anoxic Freshwater Sediments. Mobility of Heavy Metals and Nutrients. Lecture Notes in Earth Sciences 81. Springer-Verlag, Berlin.Google Scholar
  82. Stumm, W. andJ. J. Morgan. 1996. Aquatic Chemistry, 3rd edition, John Wiley, New York.Google Scholar
  83. Suess, E. 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter.Geochimica Cosmochimica Acta 43:339–352.CrossRefGoogle Scholar
  84. Sundby, B. 1994. Sediment-water exchange processes, Section 5, Chapter 3.In J. L. Hamelink, P. F. Landrum, H. L. Bergman, and W. H. Benson (eds.), Bioavailability: Physical, Chemical, and Biological Interactions. CRC Press, Inc., Florida.Google Scholar
  85. Sundby, B. andN. Silverberg. 1985. Manganese fluxes in the benthic boundary layer.Limnology and Oceanography 30:372–381.CrossRefGoogle Scholar
  86. Tessenow, U. 1974. Lösungs-, Diffusions-, und Sorptionsprozesse in der Oberschicht von Seesedimenten. IV.Archin fuer Hydrobiologie Supplementband 47:1–79.Google Scholar
  87. Tessier, A. andP. G. C. Campbell. 1991. Comment on “Pittfalls of sequential extractions” by Nirel P. M. V. and F. M. M. Morel.Water Research 25:115–117.CrossRefGoogle Scholar
  88. Tessier, A., P. G. C. Campbell, andM. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry 51:844–851.CrossRefGoogle Scholar
  89. Thamdrup, B., H. Fossing, andB. B. Jørgensen. 1994. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark.Geochimica et Cosmochimica Acta 58: 5115–5129.CrossRefGoogle Scholar
  90. Thomas, C. A. andL. I. Bendell. 1999. The significance of diagenesis versus riverine input in contributing to the sediment geochemical matrix of iron and manganese in intertidal region.Estuarine, Coastal and Shelf Science 48:635–647.CrossRefGoogle Scholar
  91. Van Genderen, A. C. G. andC. H. Van der Weijden. 1984. Prediction of Gibbs energies of formation and stability constant of some secondary uranium minerals containing the uranyl group.Uranium 1:249–256.Google Scholar
  92. Warnken, K. W., G. A. Gill, L. L. Griffin, andP. H. Santschi. 2001. Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas.Marine Chemistry 73:215–231.CrossRefGoogle Scholar
  93. Wartel, M., M. Skiker, Y. Auger, andA. Boughriet. 1990. Interaction of manganese (II) with carbonates in seawater: Assessment of the solubility product of MnCO3 and Mn distribution coefficient between the liquid phase and CaCo3 particles.Marine Chemistry 29:99–117.CrossRefGoogle Scholar
  94. Wedepohl, K. H. 1971. Environmental influences on the chemical composition of shales and clays, p. 307–333.In L. H. Arhens, F. Press, S. K. Runcorn, and H. C. Vrey (eds.), Physics and Chemistry of the Earth. Academic Press, London.Google Scholar
  95. Wilson, T. R. S., H. Cussen, andA. C. Braithwaite. 1993. An improved electrode for pore water oxygen measurement in ocean sediments.The Science of the Total Environment 135:115–121.CrossRefGoogle Scholar
  96. Yu, T. R. andG. L. Li. 1993. Electrochemical Methods in Soil and Water Research. Pergamon Press, Oxford.Google Scholar

Copyright information

© Estuarine Research Federation 2001

Authors and Affiliations

  • B. Ouddane
    • 1
    Email author
  • D. Boust
    • 2
  • E. Martin
    • 1
  • J. C. Fischer
    • 1
  • M. Wartel
    • 1
  1. 1.Université des Sciences et Technologies et Lille Laboratoire de Chimie Analytique et Marine (LCAM) UPRESA CRNS 8013 BâtVilleneuve d’Ascq CedexFrance
  2. 2.Laboratoire d’Etudes Radioécologiques de la Façade Atlantique (LERFA)OctevilleFrance

Personalised recommendations