Advertisement

Estuaries

, Volume 24, Issue 6, pp 977–993 | Cite as

Modeling the response of water quality in the Seine River estuary to human activity in its watershed over the last 50 years

  • Gilles Billen
  • Josette Garnier
  • André Ficht
  • Christine Cun
Article

Abstract

The unique database of water quality measurements made in the Seine estuary over 45 years by the Service de la Navigation de la Seine at Rouen is used here to reconstruct the evolution of oxygen status in the estuary and the nutrient fluxes to the Seine Bight during the last half century. The Riverstrahler model is used to establish the link between these long-term trends in the functioning of the Seine system and the evolution of agricultural, domestic, and industrial activity in the watershed over this period taking into account natural and man-induced hydrological variations. Oxygenation of the fluvial sector below Paris has increased considerably owing to improved wastewater treatment, but a large part of the estuary remains completely anoxic during the spring and summer months. Nitrogen input to surface waters from urban sources has remained essentially constant while diffuse inputs from agricultural soils have increased 5-fold as a result of more intensive agricultural practices as well as the loss of retention capacity in riparian zones. Phosphorus inputs from domestic and industrial sources increased 3-fold from 1950 to 1980, but have decreased gradually in recent years. The generally high level of phosphorus contamination has favored strong algal development in all large tributaries of the Seine River upstream of paris since the 1960s. Silica inputs, originating mainly from the weathering of rocks, fluctuate widely depending on hydrology. In-stream retention of silica, linked to diatom blooms, has increased but remains limited. These changes have induced several shifts in the nutrient limitation conditions of the Seine Bight.

Keywords

Riparian Zone Large Tributary Diatom Bloom Seine Estuary Phosphorus Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Agence de l’Eau Seine Normandie (AESN). 1976. Les Bassins de la Seine et des cours d’eau Normands. Tome 1: Besoins et utilisation d’eau et Pollution. Mission Dêléguée de bassin Seine Normandie, Paris.Google Scholar
  2. Agence de l’Eau Seine Normandie (AESN). 1999. Tableau de Bord. Suivi des orientations du Schéma Directeur d’Aménagement et de Gestion des Eaux du Bassin Seine-Normandie, Paris.Google Scholar
  3. Aminot, A., J. F. Guillaud, F. Andrieux-Loyer, R. Kérouël, andP. Cann. 1998. Apports de nutriments et développement phytoplanctonique en Baie de Seine.Oceanologica Acta 21:923–935.CrossRefGoogle Scholar
  4. Belin, C., J.-P. Berthome, andP. Lassus. 1989. Dinoflagellés toxiques et phénomènes d’eaux colorées sur les côtes françaises: Évolution et tendances entre 1975 et 1988.Hydroécologie Appliquée 1989:3–17.CrossRefGoogle Scholar
  5. Belin, C. andB. Raffin. 1998. Les espèces phytoplanctoniques toxiques et nuisibles sur le littoral français de 1984 à 1995, résultats du REPHY (réseau de surveillance du phytoplancton et des phycotoxines). RST.DEL/MP-AO 98-16. IFREMER, Plouzane.Google Scholar
  6. Billen, G., J. Garnier, andP. Hanset. 1994. Modelling phytoplankton development in whole drainage networks: The RIVERSTRAHLER model applied to the Seine River system.Hydrobiologia 289:119–137.CrossRefGoogle Scholar
  7. Billen, G. andJ. Garnier. 1997. The Phison River plume: Coastal eutrophication in response to changes in land use and water management in the watershed.Aquatic Microbial Ecology 13:3–17.CrossRefGoogle Scholar
  8. Billen, G., J. Garnier, C. Deligne, andC. Billen. 1999. Estimates of early industrial inputs of nutrients to river systems: Implication for coastal eutrophication.The Sciences of the Total Environment 243/244:43–52.CrossRefGoogle Scholar
  9. Billen, G. andJ. Garnier. 1999. Nitrogen transfer through the Seine drainage network: A budget based on the application of the RIVERSTRAHLER Model.Hydrobiologia 410:139–150.CrossRefGoogle Scholar
  10. Brion, N., G. Billen, andL. Guézennec. 2000. Distribution of nitrifying activity in the Seine River (France) from Paris to the estuary.Estuaries 23:669–682.CrossRefGoogle Scholar
  11. Boët, P., J. Belliard, R. Berrebi-dit-Thomas, andE. Tales. 1999. Multiple human impacts by the city of Paris on fish communities in the Seine River basin, France.Hydrobiologia 410:59–68.CrossRefGoogle Scholar
  12. Conley, D. J. 1999. Biogeochemical nutrient cycles and nutrient management strategies.Hydrobiologia 289:87–96.CrossRefGoogle Scholar
  13. Cornu, F.-X. 1970. Les savons et les détergents. Que Sais-je? Presse Universitaires de France, Paris.Google Scholar
  14. Cun, C. andR. Vilaginês. 1997. A 90 year record of water quality data of Paris Seine and Marne Rivers.Journal of Water Science, Research and Technology—Aqua 46:150–164.Google Scholar
  15. Fritz, M. 1994. Etude statistique de la contamination en nitrates des cours d’eau et des nappes principales du bassin de l’Yonne et de la Seine en amont de Montereau. DEA d’Hydrologie. Université de Paris VI, France.Google Scholar
  16. Garnier, J., G. Billen andM. Coste. 1995. Seasonal succession of diatoms and chlorophyecae in the drainage network of the River Seine: Observations and modelling.Limnology and Oceanography 40:750–765.Google Scholar
  17. Garnier, J., B. Leporcq, N. Sanchez, andX. Philippon. 1999a. Biogeochemical budgets in three large reservoirs of the Seine basin (Marne, Seine & Aube reservoirs).Biogeochemistry 47: 119–146.Google Scholar
  18. Garnier, J., G. Billen, andL. Palfner. 1999b. Understanding the oxygen budget and related ecological processes in the river Mosel: the RIVERSTRAHLER approach.Hydrobiologia 410:151–166.CrossRefGoogle Scholar
  19. Garnier, J., G. Billen, N. Sanchez, andB. Leporcq. 2000. Ecological functioning of the Marne Reservoir (Upper Seine basin, France).Regulated Rivers: Research and Management 16:51–71.CrossRefGoogle Scholar
  20. Guillaud, J.-F. andA. Ménesguen. 1998. Modélisation sur vingt ans (1976–1995) de la production phytoplanctonique en baie de Seine (France).Oceanologica Acta 21:887–906.CrossRefGoogle Scholar
  21. Guillaud, J. F., F. Andrieux, andA. Menesguen. 2000. Biogeochemical modelling in the Bay of Seine (France): An improvement by introducing phosphorus in nutrient cycles.Journal of Marine Systems 25:369–386.CrossRefGoogle Scholar
  22. Graneli, E., K. Wallström, U. Larsson, W. Graneli, andR. Elmgren. 1990. Nutrient limitation of primary production in the Baltic Sea Area.Ambio 19:142–151.Google Scholar
  23. Hammer, M. andK. A. MacKichan. 1981. Hydrology and Quality of Water Resources. J. Wiley & Sons, Inc., Chichester.Google Scholar
  24. INSEE. 1999. Annuaire Statistique de la France. Institut National de Statistiques et d’Etudes Economiques, Paris.Google Scholar
  25. Jaworski, N. A. 1990. Retrospective study of the water quality issues of the upper Potomac estuary.Reviews in Aquatic Sciences 3:11–40.Google Scholar
  26. Laakkonen, S. andP. Lehtonen. 1999. A quantitative analysis of discharges into the Helsinki urban sea area in 1850–1995.European Water Management 2:30–39.Google Scholar
  27. Ménesguen, A., J.-F. Guillaud, A. Aminot, andT. Hoch. 1995. Modelling the eutrophication in a river plume: the Seine River case study (France).Ophelia 42:205–225.Google Scholar
  28. Meybeck, M., G. de Marsily, andE. Fustec (eds.). 1998. La Seine en son Bassin. Fonctionnement Écologique d’un Système Fluvial Anthropisé. Elsevier, Paris.Google Scholar
  29. Naves, J. 1989. Evolution de la qualité de l’eau en Seine à Ivry sur Seine de 1887 à 1986. Mémoire de DEA d’Hydrologie. Université de Paris VI, France.Google Scholar
  30. Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes and future concerns.Ophelia 41:199–219.Google Scholar
  31. Nixon, S. W. 1997. Prehistoric nutrient inputs and productivity in Narragansett Bay.Estuaries 20:253–261.CrossRefGoogle Scholar
  32. Philippart, C. J. M., G. C. Cadée, W. van Raaphorst, andR. Riegman. 2000. Long term phytoplankton-nutrient interactions in a shallow coastal sea: Algal community structure, nutrient budget and denitrification potential.Limnology and Oceanography 45:131–144.CrossRefGoogle Scholar
  33. Poitevin, J. 1997. Les contrats de nappes: Une nouvelle approche de la gestion des eaux souterraines pour un développement durable. Institut d’Aménagement et d’Urbanisme de la région Ile de France, Paris.Google Scholar
  34. Redfield, A. C., B. H. Ketchum, andF. A. Richards. 1963. The influence of organisms on the composition of sea-water, p. 12–37.In M. N. Hill (ed.), The Sea, John Wiley & Sons. New York.Google Scholar
  35. Roberts, G. andT. Marsh 1987. The effects of agricultural practices on the nitrate concentrations in the surface water domestic supply sources of western Europe.Institute for Agronomical and Hydrological Studies Publication 164:365–380.Google Scholar
  36. Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment.Science 171:1008–1013.CrossRefGoogle Scholar
  37. Servais, P., J. Garnier, N. Demarteau, N. Brion, andG. Billen. 1999. Supply of organic matter and bacteria to aquatic ecosystems through wastewater effluents.Water Research 33:3521–3531.CrossRefGoogle Scholar
  38. Stalnacke, P., K. Grimvall, K. Sundblad, andA. Tonderski. 1998. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993.Journal of Environmental Monitoring and Assessment 58:173–200.CrossRefGoogle Scholar
  39. Strahler, N. 1957. Quantitative analysis of watershed geomorphology.Geophys. Union Trans. 38:913–920.Google Scholar
  40. Strebel, O., W. H. M. Duynisveld, andJ. Bottcher. 1989. Nitrate pollution in groundwater in Western Europe.Agriculture, Ecosystems and Environment 26:189–214.CrossRefGoogle Scholar
  41. Thibert, S. 1994. Exportations naturelles et anthropiques des ions majeurs et des éléments nutritifs dans le bassin de la Seine. Approches méthodologiques. Thèse de doctorat de l’Université de Paris VI. Spécialité Sciences de l’Eau. No 94-20. Paris.Google Scholar
  42. Van der Weijden, C. H. andJ. J. Middelburg. 1989. Hydrogeochemistry of the river Rhine: Long term and seasonal variability, elemental budgets, base levels and pollution.Water Resources 23:1247–1266.Google Scholar
  43. Videau, C., M. Ryckaert, andS. L’Helguen. 1998. Phytoplancton en Baie de Seine. Influence du panache fluvial sur la production primaire.Oceanologica Acta 21:907–922.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. AGRESTE (Statistics of the French Ministry of Agriculture). Recencement General de l’Agriculture. Online www.agreste.agriculture.gouv.fr.Google Scholar
  2. Paffoni, C. Personal Communication. Centre de Recherche Interdépartmental pour le traitement des eaux résiduaires, 82 avenue Kléber, F 92700 Colombes, France.Google Scholar
  3. Rousselot, O. Personal Communication. Centre de Recherche Interdépartmental pour le traitement des eaux résiduaires, 82 avenue Kléber, F 92700 Colombes, France.Google Scholar

Copyright information

© Estuarine Research Federation 2001

Authors and Affiliations

  • Gilles Billen
    • 1
  • Josette Garnier
    • 1
  • André Ficht
    • 2
  • Christine Cun
    • 3
  1. 1.Unité Mixte de Recherche SisypheCentre National de la Recherche Scientifique—Université P. & M. CurieParis Cedex 05France
  2. 2.Cellule Anti-PollutionService de la Navigation de la SeineRouenFrance
  3. 3.Centre de Recherche et de Contrôle des Eaux de ParisParisFrance

Personalised recommendations