, Volume 23, Issue 6, pp 793–819 | Cite as

Estuaries of the South Atlantic coast of North America: Their geographical signatures

  • Richard Dame
  • Merryl Alber
  • Dennis Allen
  • Michael Mallin
  • Clay Montague
  • Alan Lewitus
  • Alice Chalmers
  • Robert Gardner
  • Craig Gilman
  • Björn Kjerfve
  • Jay Pinckney
  • Ned Smith


Estuaries of the southeastern Atlantic coastal plain are dominated by shallow meso-tidal bar-built systems interspersed with shallow sounds and both low flow coastal plain and high flow piedmont riverine systems. Three general geographical areas can be discriminated: the sounds of North Carolina; the alternating series of riverine and ocean dominated bar-built systems of South Carolina, Georgia, and northeast Florida, and the subtropical bar-built estuaries of the Florida southeast coast. The regional climate ranges from temperate to subtropical with sea level rise and hurricanes having a major impact on the region's estuaries because of its low and relatively flat geomorphology. Primary production is highest in the central region. Seagrasses are common in the northern and southern most systems, while intertidal salt marshes composed ofSpartina alterniflora reach their greatest extent and productivity in South Carolina and Georgia. Nuisance blooms (cyanobacteria, dinoflagellates, and cryptomonads) occur more frequently in the northern and extreme southern parts of the region. Fishery catches are highest in the North Carolina and Florida areas. Human population growth with its associated urbanization reaches a maximum in Florida and it is thought that the long-term sustainability of the Florida coast for human habitation will be lost within the next 25 years. Tidal flushing appears to play an important role in mitigating anthropogenic inputs in systems of moderate to high tidal range, i.e., the South Carolina and Georgia coasts. The most pressing environmental problems for the estuaries of the southeastern Atlantic coast seem to be nutrient loading and poor land use in North Carolina and high human population density and growth in Florida. The future utilization of these estuarine systems and their services will depend on the development of improved management strategies based on improved data quality.


Phytoplankton Salt Marsh Marine Ecology Progress Series Oyster Reef Benthic Microalgae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alber, M. 2000. Settable and non-settable suspended sediments in the Ogeechee River Estuary, Georgia USA.Estuarine, Coastal, and Shelf Science 50:805–816.Google Scholar
  2. Alber, M. andJ. E. Sheldon. 1999. Use of a date-specific method to examine variability in the flushing times of Georgia estuaries.Estuarine, Coastal and Shelf Science 49:469–482.Google Scholar
  3. Alber, M. andI. Valiela. 1995. Organic aggregates in detrital food webs: Incorporation by bay scallops,Argopecten irradians.Marine Ecology Progress Series 121:117–124.Google Scholar
  4. Alberts, J. J. andM. Takacs. 1999. Importance of humic substances for carbon and nitrogen transport into southeastern United States estuaries.Organic Geochemistry 30:385–395.Google Scholar
  5. Alexander, C. E., M. A. Brontman, andD. W. Field. 1986. An Inventory of Coastal Wetlands in the USA. National Oceanic and Atmospheric Administration National Ocean Service, Department of Commerce, Washington, D.C.Google Scholar
  6. Allen, D. M., W. S. Johnson, andV. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of salt marshes by zooplanktivorous fishes.Environmental Biology of Fishes 42: 37–50.Google Scholar
  7. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, andF. Thingstad. 1983. The ecological role of water-column microbes in the sea.Marine Ecology Progress Series 10:257–263.Google Scholar
  8. Biggs R. B., T. B. DeMoss, M. M. Carter, andE. L. Beasley. 1989. Susceptibility of U.S. estuaries to pollution.Reviews in Aquatic Sciences 1:189–207.Google Scholar
  9. Biggs, R. B. andB. A. Howell. 1984. The estuary as a sediment trap: Alternate approaches to estimating its filtering efficiency. p. 107–129.In V. S. Kennedy (ed.), The Estuary as a Filter. Academic Press, New York.Google Scholar
  10. Bozeman, E. L. andJ. M. Dean. 1980. The abundance of estuarine larval and juvenile fish in a South Carolina intertidal creek.Estuaries 3:89–97.Google Scholar
  11. Bricker, S. B., C. G. Clement, D. E. Pirhalla, S. P. Orlando, andD. R. G. Farrow. 1999. National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation's Estuaries. National Oceanic and Atmospheric Administration, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science. Silver Spring, Maryland.Google Scholar
  12. Burkholder, J. M. 1998. Implications of harmful marine microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries.Ecological Applications 8:S37-S62.Google Scholar
  13. Burkholder, J. M. andH. B. Glasgow, Jr. 1997.Pfiesteria piscicida and otherPfiesteria-like dinoflagellates: Behavior, impacts, and environmental controls.Limnology and Oceanography 42:1052–1075.Google Scholar
  14. Burkholder, J. M., H. B. Glasgow, Jr., andC. W. Hobbs. 1995. Distribution and environmental conditions for fish kills linked to a toxic ambush predator dinoflagellate.Marine Ecology Progress Series 124:43–61.Google Scholar
  15. Burkholder, J. M., E. J. Noga, C. H. Hobbs, H. B. Glasgow, andS. A. Smith. 1992. New ‘phantom’ dinoflagellate is the causative agent of major estuarine fish kills.Nature 358:407–410.Google Scholar
  16. Cahoon, L. B., J. E. Nearhoof, andC. L. Tilton. 1999. Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems.Estuaries 22:735–741.Google Scholar
  17. Cai, W. J., L. R. Pomeroy, M. A. Moran, andY. Wang. 1999. Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern U.S.Limnology and Oceanography 44:639–649.Google Scholar
  18. Cai, W. J., W. J. Wiebe, Y. Wang, and J. E. Sheldon. in press. Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S.Limnology and Oceanography.Google Scholar
  19. Capriulo, G. M. 1990. Feeding-related ecology of marine protozoa, p. 186–259.In G. M. Capriulo (ed.), Ecology of Marine Protozoa. Oxford University Press, New York.Google Scholar
  20. Carpenter, E. J.. 1971. Annual phytoplankton cycle of the Cape Fear River Estuary, North Carolina.Chesapeake Science 12:95–104.Google Scholar
  21. Chalmers, A. G., R. G. Wiegert, andP. L. Wolf. 1985. Carbon balance in a salt marsh: Interactions of diffusive export, tidal deposition and rainfall-caused erosion.Estuarine, Coastal and Shelf Science 21:757–771.Google Scholar
  22. Church, T. M. 1996. An underground route for the water cycle.Nature 380:579–580.Google Scholar
  23. Clarke, J. S., C. M. Hacke, andM. F. Peck. 1990. Geology and ground water resources of the coastal area of Georgia.Georgia Coastal Geological Survey Bulletin 113:1–106.Google Scholar
  24. Coastal Assessment and Data Synthesis System. 1999. Physical and Hydrological Characteristics of Coastal Watersheds. National Coastal Assessments Branch, Special Projects Office, National Ocean Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland.Google Scholar
  25. Coleman, V. L. andJ. M. Burkholder. 1994. Community structure and productivity of epiphytic microalgae on eelgrass (Zostera marina L.) under water-column nitrate enrichment.Journal of Experimental and Marine Biology and Ecology 179:29–48.Google Scholar
  26. Coull, B. C. 1985. Long-term variability of estuarine meiobenthos: An 11-year study.Marine Ecology Progress Series 24:205–213.Google Scholar
  27. Coull, B. C. andS. Bell. 1979. Perspectives of meiofaunal ecology, p. 189–216.In R. J. Livingston (ed.), Ecological Processes in Coastal and Marine Systems. Plenum, New York.Google Scholar
  28. Coutinho, R. 1987. Ecology of macroalgae in North Inlet estuary, S.C. Ph.D. Thesis, University of South Carolina, Columbia, South Carolina.Google Scholar
  29. Critcher, T. S. 1967. The Wildlife Values of North Carolina Estuarine Lands and Waters, North Carolina Wildlife Resources Commission. Raleigh, North Carolina.Google Scholar
  30. Culliton, T. J., M. A. Warren, T. R. Goodspeed, D. G. Remer, C. M. Blackwell, andJ. J. McDonough. 1990. 50 Years of Population Change Along the Nation's Coast, 1960–2010. National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Rockville, Maryland.Google Scholar
  31. Dai, T. andR. G. Wiegert. 1996. Ramet population dynamics and net aerial primary productivity ofSpartina alterniflora.Ecology 77:276–288.Google Scholar
  32. Dame, R. F. 1989. The importance ofSpartina alterniflora to Atlantic coast estuaries.Critical Reviews in Aquatic Sciences 1:639–660.Google Scholar
  33. Dame, R. F. 1996. Ecology of Marine Bivalves: An Ecosystem Approach. CRC Press, Boca Raton, Florida.Google Scholar
  34. Dame, R. F. andD. M. Allen. 1996. Between estuaries and the sea.Journal of Experimental Marine Biology and Ecology 200:169–185.Google Scholar
  35. Dame, R. F., D. Childers, andE. Koepfler. 1992. A geohydrologic continuum theory for the spatial and temporal evolution of marsh-estuarine ecosystems.Netherlands Journal of Sea Research 30:63–72.Google Scholar
  36. Dame, R. F., T. H. Chrzanowski, K. Bildstein, B. Kjerfve, H. McKellar, D. Nelson, J. D. Spurrier, S. Stancyk, H. Stevenson, F. J. Vernberg, andR. G. Zingmark. 1986. The outwelling hypothesis and North Inlet, South Carolina.Marine Ecology Progress Series 33:217–229.Google Scholar
  37. Dame, R. F., J. D. Spurrier, T. M. Williams, B. Kjerfve, R. G. Zingmark, T. G. Wolaver, T. H. Chrzanowski, H. McKellar, andF. J. Vernberg. 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina.Marine Ecology Progress Series 72:153–166.Google Scholar
  38. Dame, R. F., J. D. Spurrier, andT. G. Wolaver. 1989. Carbon, nitrogen and phosphorus processing by an oyster reef.Marine Ecology Progress Series 54:249–256.Google Scholar
  39. Dardeau, M. R., R. F. Maudlin, W. W. Schroeder, andJ. P. Stout. 1992. Estuaries, p. 615–744.In C. T. Hackney, S. M. Adams, and W. H. Martin (eds.), Biodiversity of the Southeastern United States. Aquatic Communities. John Wiley & Sons, Inc., New York.Google Scholar
  40. Day, J. W., C. A. S. Hall, W. M. Kemp, andS. Yanez-Arancibia. 1989. Estuarine Ecology. Wiley, New York.Google Scholar
  41. Dynesius, M. andC. Nilsson. 1994. Fragmentation and flow regulation of river systems in the northern third of the world.Science 266:753–762.Google Scholar
  42. EarthInfo, Inc. 1997. EarthInfo CD2 U.S. Geological Survey Daily Values. Boulder, Colorado.Google Scholar
  43. Eleuterius, L. N. 1976. The distribution ofJuncus roemerianus in the salt marshes of North America.Chesapeake Science 17: 289–292.Google Scholar
  44. Environmental Protection Division. 1997. Interim Strategy for Managing Salt Water Intrusion in the Upper Floridian Aquifer of Southeast Georgia. April 23, 1997. Environmental Protection Division, Georgia Department of Natural Resources. Atlanta, Georgia.Google Scholar
  45. Evre, B. andC. Twigg. 1997. Nutrient behaviour during post-flood recovery of the Richmond River Estuary, Northern NSW, Australia.Estuarine, Coastal and Shelf Science 44:311–326.Google Scholar
  46. Fulton, R. S. 1984. Distribution and community structure of estuarine copepods.Estuaries 7:38–50.Google Scholar
  47. Gallagher, J. L. andR. J. Reimold. 1973. Tidal marsh plant distribution and productivity patterns from the sea to fresh-water—A challenge in resolution and discrimination, p. 165–183.In IV Biennial Workshop on Color Aerial Photography in Plant Sciences and Related Fields. American Society of Photography, Washington, D.C.Google Scholar
  48. Gardner, L. R., W. K. Michener, T. M. Williams, E. R. Blood, B. Kjerfve, L. A. Smock, D. J. Lipscomb, andC. Gresham. 1992. Disturbance effects of Hurricane Hugo and a pristine coastal landscape: North Inlet, South Carolina, USA.Netherlands Journal of Sea Research 30:249–263.Google Scholar
  49. Gilmore, R. G. 1995. Environmental biogeographic factors influencing ichthyofaunal diversity: Indian River Lagoon.Bulletin of Marine Science 57:153–170.Google Scholar
  50. Glibert, P. M., J. C. Goldman, andE. J. Carpenter. 1982. Seasonal variations in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA.Maine Biology 70:237–249.Google Scholar
  51. Haines, B. L. andE. L. Dunn. 1985. Coastal marshes, p. 323–347.In B. F. Chabot and H. A. Mooney (eds), Physiological Ecology of North American Plant Communities. Chapman and Hall, New York.Google Scholar
  52. Haines, E. B. 1976. Stable carbon isotope ratios in the biota, soils and tidal water of a Georgia salt marsh.Estuarine Coastal Marine Science 4:609–616.Google Scholar
  53. Hanson, K. andG. Maul. 1991. Florida precipitation and the Pacific El Niño, 1895–1989.Florida Scientist 54:160–168.Google Scholar
  54. Hayes, M. O. 1978. Impact of hurricanes on sedimentation in estuaries, bays, and lagoons, p. 323–346.In M. L. Wiley (ed.), Estuarine Interactions. Academic Press, New York.Google Scholar
  55. Heald, E. J. 1969. The production of organic detritus in a south Florida estuary. Ph.D. Dissertation, University of Miami, Miami, Florida.Google Scholar
  56. Hefner, J. M., B. O. Willen, T. E. Dahl, andW. E. Frayer 1994. Southeast Wetlands. U.S. Department of the Interior, Fish and Wildlife Service and U.S. Environmental Protection Agency, Washington, D.C. ( Scholar
  57. Hettler, Jr.,W. F. 1989. Nekton use of regularly flooded salt marsh cordgrass habitat in North Carolina, USA.Fishery Bulletin 56:111–118.Google Scholar
  58. Hoerling, M. P. andA. Kumar. 1997. Why do North American climate anomalies differ from one EI Niño event to another?Geophysical Research Letters 24:1059–1062.Google Scholar
  59. Hoese, H. D. 1971. Dolphin feeding out of water in a salt marsh.Journal of Mammalogy 52:222–223.Google Scholar
  60. Houser, D. S. andD. M. Allen. 1996. Zooplankton dynamics in an intertidal salt-marsh basin.Estuaries 19:659–673.Google Scholar
  61. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Dowling, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyrof, P. Murdoch, andZ. Zhao-Liang. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.Google Scholar
  62. Humm, H. J. 1969. Distribution of marine algae along the Atlantic coast of North America.Phycologia 7:43–53.Google Scholar
  63. Jensen, P. R. andR. A. Gibson. 1986. Primary production in three subtropical seagrass communities: A comparison of four autotrophic components.Florida Scientist 49:129–141.Google Scholar
  64. Kawaguchi, T., A. J. Lewitus, C. M. Aelion, andH. N. McKellar. 1997. Can urbanization limit iron availability to estuarine algae?Journal of Experimental Marine Biology and Ecology 213:53–69.Google Scholar
  65. Keller, A. A., C. A. Oviatt, H. A. Walker, andJ. D. Hawak. 1999. Predicted impacts of elevated temperature on the magnitude of the winter-spring phytoplankton bloom in temperate coastal waters: A mesocosm study.Limnology and Oceanography 44:344–356.Google Scholar
  66. Kjerfve, B. 1989. Estuarine geomorphology and physical oceanography, p. 47–78.In J. Day, C. Hall, M. Kemp, and A. Yanez-Arancibia, Estuarine Ecology. Wiley, New York.Google Scholar
  67. Kjerfve, B., J. E. Greer, andR. L. Crout. 1978. Low-frequency response of estuarine sea level to non-local forcing. p. 497–513.In M. Wiley (ed.), Estuarine Interactions. Academic Press, New York.Google Scholar
  68. Kneib, R. T. 1997. The role of tidal marshes in the ecology of estuarine nekton.Oceanography and Marine Biology: An Annual Review 35:163–220.Google Scholar
  69. Kuhnel, I., T. A. McMahon, B. L. Finlayson, A. Haines, P. H. Whetton, andT. T. Gibson. 1990. Climatic influences on streamflow variability: A comparison between Southeastern Australia and Southeastern United States of America.Water Resources Research 26:2483–2496.Google Scholar
  70. Le Gall, S., M. B. Hassen, andP. Le Gall. 1997. Ingestion of a bacterivorous ciliate by the oysterCrassostrea gigas: Protozoa as a trophic link between picoplankton and benthic suspension-feeders.Marine Ecology Progress Series 152:301–306.Google Scholar
  71. Lewitus, A. J., K. C. Hayes, S. G. Grandsen, H. B. Glasgow, Jr., J. M. Burkholder, P. M. Glibert, and S. Morton, in press. Ecological characterization of a widespread red tide in South Carolina estuaries: A newly observed phenomenon. Proceedings of the Harmful Algal Blooms 2000 9th Conference, Tasmania, Australia, February 7–11, 2000.Google Scholar
  72. Lewitus, A. J., R. V. Jesien, T. M. Kana, J. M. Burkholder, H. B. Glasgow, Jr., andE. May. 1995. Discovery of the “phantom” dinoflagellate in Chesapeake Bay.Estuaries 18:373–378.Google Scholar
  73. Lewitus, A. J., E. T. Koepfler, andJ. T. Morris. 1998. Seasonal variation in the regulation of phytoplankton by nitrogen and grazing in a salt-marsh estuary.Limnology and Oceanography 43: 636–646.Google Scholar
  74. Lewitus, A. J., E. T. Koepfler, andR. Pigg. 2000. Use of dissolved organic nitrogen by a salt marsh phytoplankton bloom community.Archiv fur Hydrobiologie Special Issues in Advances in Limnology 55:441–456.Google Scholar
  75. Lomas, M. W. andP. M. Glibert. 1999. Temperature regulation of nitrate uptake: A novel hypothesis about nitrate uptake and reduction in cool-water diatoms.Limnology and Oceanography 44:556–572.Google Scholar
  76. Lonsdale, D. J. andB. C. Coull. 1977. Composition and seasonality of zooplankton of North Inlet, South Carolina.Chesapeake Science 18:272–283.Google Scholar
  77. Lugo, A. E. andS. C. Snedaker. 1974. The ecology of mangroves.Annual Review of Ecology and Systematics 5:39–64.Google Scholar
  78. Mallin, M. A. 1991. Zooplankton abundance and community structure in a mesohaline North Carolina estuary.Estuaries 14: 481–488.Google Scholar
  79. Mallin, M. A. 1994. Phytoplankton ecology of North Carolina estuaries.Estuaries 17:561–574.Google Scholar
  80. Mallin, M. A. 2000. Impacts of industrial animal production on rivers and estuaries.American Scientist 88:24–37.Google Scholar
  81. Mallin, M. A., J. M. Burkholder, andM. J. Sullivan. 1992. Contributions of benthic microalgae to coastal fishery yield.Transactions of the American Fisheries Society 121:691–695.Google Scholar
  82. Mallin, M. A. andH. W. Paerl. 1994. Planktonic trophic trans fer in an estuary: Seasonal, diel, and community structure effects.Ecology 75:2168–2184.Google Scholar
  83. Mallin, M. A., M. H. Posey, G. C. Shank, M. R. McIver, S. H. Ensign, andT. D. Alphin. 1999. Hurricane effects on water quality and benthos in the Cape Fear Watershed: Natural and anthropogenic impacts.Ecological Applications 9:350–362.Google Scholar
  84. Manheim, F. T., R. H. Meade, andG. C. Bond. 1970. Suspended matter in surface waters of the Atlantic Continental Margin from Cape Cod to the Florida Keys.Science 167:371–376.Google Scholar
  85. Marshall, H. G. 1985. Phytoplankton assessment of the Duplin River, Georgia.Castanea 50:187–194.Google Scholar
  86. McIvor, C. C. andL. P. Rozas. 1996. Direct nekton use of intertidal salt marsh habitats: A review from the southeastern United States, p. 311–334.In K. F. Nordstrom and C. T. Roman (eds.), Estuarine Shores: Evolution, Environments, and Human Alterations. Wiley, New York.Google Scholar
  87. Meade, R. H. 1969. Landward transport of bottom sediments in estuaries of the Atlantic Coastal Plain.Journal of Sedimentary Petrology 39:222–234.Google Scholar
  88. Meade, R. H. 1972. Sources and sinks of suspended matter on continental shelves, p. 249–262.In D. J. P. Swift, D. B. Duane, and O. H. Pilkey (eds.), Shelf Sediment Transport: Process and Pattern. Dowden, Hutchinson and Ross, Stroudsburg.Google Scholar
  89. Meade, R. H. 1982. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States.The Journal of Geology 90:235–252.Google Scholar
  90. Mitsch, W. J. andJ. G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York.Google Scholar
  91. Montague, C. L. 1997. The future of Florida's coast.Journal of Public Interest in the Environment 1:51–59.Google Scholar
  92. Montague, C. L. andH. T. Odum. 1997. Intertidal marshes of Florida's Gulf Coast, p. 1–33.In C. L. Coultas and Y. P. Hsieh (eds.), Ecology and Management of Tidal Marshes: A Model from the Gulf of Mexico. St. Lucie Press, Delray Beach, Florida.Google Scholar
  93. Montague, C. L. andR. G. Wiegert. 1990. Salt marshes, p. 481–516.In R. L. Myers and J. J. Ewel (eds.), Ecosystems of Florida. University of Central Florida Press, Orlando, Florida.Google Scholar
  94. Moore, W. S. 1996 Large groundwater inputs to coastal waters revealed by226Ra enrichments.Nature 380:612–614.Google Scholar
  95. Mulholland, P. J. andC. R. Olsen. 1992. Marine origin of Savannah River sediments: Evidence from radioactive and stable isotope tracers.Estuarine, Coastal and Shelf Science 34:95–107.Google Scholar
  96. National Oceanic and Atmospheric Administration. 1996. NOAA's Estuarine Eutrophication Survey. Volume 1: South Atlantic Region. Office of Ocean Resources Conservation Assessment, Silver Spring, Maryland.Google Scholar
  97. National Oceanic and Atmospheric Administration. 1997. The Deadliest, Costliest, and Most Intense United States Hurricanes of this Century. Technical Memorandum N.W.S. TPC-1. Silver Spring, Maryland.Google Scholar
  98. National Oceanic and Atmospheric Administration. 1999. Coastal Assessment and Data Synthesis System. Eutrophication Assessment—Regional Summary. Silver Spring, Maryland.Google Scholar
  99. Nelson, D. M., E. A. Irlandi, L. R. Settle, M. E. Monaco, andL. E. Coston-Clements. 1991. Distribution and Abundance of Fishes and Invertebrates in Southeast Estuaries. Estuarine Living Marine Resources Report No. 9. National Oceanic and Atmospheric Administration/National Ocean Service Strategic Environmental Assessments Division, Rockville, MarylandGoogle Scholar
  100. Newell, S. Y. 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones.Journal of Experimental Marine Biology and Ecology 200: 187–206.Google Scholar
  101. Odum, E. P. andA. de la Cruz. 1967. Particulate organic detritus in a Georgia salt marsh-estuarine ecosystem, p. 383–388.In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science, Washington, D.C.Google Scholar
  102. Odum, W. E. andE. J. Heald. 1972. Trophic analysis of an estuarine mangrove community.Bulletine of Marine Science 22: 671–738.Google Scholar
  103. Odum, W. E. andC. C. McIvor. 1990. Mangroves, p. 517–548.In R. L. Myers and J. J. Ewel (eds.), Ecosystems of Florida. University of Central Florida Press, Orlando, Florida.Google Scholar
  104. Odum, W. E., T. J. Smith, J. E. Hoover, and C. C. McIvor. 1984. The Ecology of Tidal Freshwater Marshes of the United States East Coast: A Community Profile. U.S. Fish and Wildlife Service, FWS/OBS-87/17, Washington, D.C.Google Scholar
  105. Orlando, S. P., P. H. Wendt, C. J. Klei, M. E. Pattillo, K. C. Dennis, andG. H. Ward. 1994. Salinity Characteristics of South Atlantic Estuaries. National Oceanic and Atmospheric Administration, Ocean Resource Conservation and Assessment, Silver Spring, Maryland.Google Scholar
  106. Paerl, H. W. 1997. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and ground-water as “new” nitrogen and other nutrient sources.Limnology and Oceanography 42:1152–1165.Google Scholar
  107. Patullo, J., W. H. Munk, R. Revelle, andE. Strong. 1955. The seasonal oscillation in sea level.Journal of Marine Research 14:88–156.Google Scholar
  108. Pauly, D. andV. Christensen. 1995. Primary production required to sustain global fisheries.Nature 374:255–257.Google Scholar
  109. Panhale, P. A. 1977. Macrophyte-epiphyte biomass and productivity in an eelgrass (Zostera marina L.) community.Journal of Experimental Marine Biology and Ecology 26:211–224.Google Scholar
  110. Peters, D. S. andW. E. Schaaf. 1991. Empirical model of the trophic basis for fishery yield in coastal waters of the Eastern USA.Transactions of the American Fisheries Society 120:458–473.Google Scholar
  111. Peterson, B. J. andR. W. Howarth. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the saltmarsh estuaries of Sapelo Island, Georgia.Limnology and Oceanography 32:1195–1213.Google Scholar
  112. Philander, S. G. H. 1990. El Niño, La Niña and the Southern Oscillation. Academic Press, New York.Google Scholar
  113. Pinckney, J. L., H. W. Paerl, M. Harrington, andK. Howe. 1998. Annual cycles of phytoplankton community structure and bloom dynamics in the Neuse River Estuary, NC.Marine Biology 131:371–381.Google Scholar
  114. Pinckney, J. L. andR. G. Zingmark. 1993a. Modeling the annual production of intertidal benthic microalgae in estuarine ecosystem.Journal of Phycology 29:396–407.Google Scholar
  115. Pinckney, J. L. andR. G. Zingmark. 1993b. Biomass and production of benthic microalgal communities in five typical estuarine habitats.Estuaries 16:887–897.Google Scholar
  116. Pomeroy, L. R. 1959. Algal productivity in salt marshes in Georgia.Limnology and Oceanography 4:386–397.Google Scholar
  117. Pomeroy, L. R., W. Darley, E. Dunn, J. Gallagher, E. Haines, andD. Whitney. 1981. Primary production, p. 39–67In L. R. Pomeroy and R. G. Wiegert (eds.), The Ecology of a Salt Marsh. Springer-Verlag, New York.Google Scholar
  118. Pomeroy, L. R., H. H. Haskin, andR. A. Ragotzkie. 1956. Observations on dinoflagellate blooms.Limnology and Oceanography 1:54–60.Google Scholar
  119. Pomeroy, L. R., L. R. Shenton, R. D. H. Jones, andR. J. Reimold. 1972. Nutrient flux in estuaries. Nutrients and Eutrophication.American Society of Limnology and Oceanography Special Symposium 1:274–291.Google Scholar
  120. Roman, M. R., M. R. Reeve, andJ. L. Froggat. 1983. Carbon production and export from Biscayne Bay, Florida. Temporal patterns in primary production, seston, and zooplankton.Estuarine, Coastal and Shelf Science 17:45–59.Google Scholar
  121. Ropelewski, C. F. andM. S. Halpert. 1986. North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO).Monthly Weather Review 114:2352–2362.Google Scholar
  122. Sanders, R. W., D. A. Caron, andU. G. Beringinger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison.Marine Ecology Progress Series 86:1–14.Google Scholar
  123. Schubauer, J. P. andD. S. Hopkinson. 1984. Above and below-ground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia.Limnology and Oceanography 29:1052–1065.Google Scholar
  124. Service, S. K. andR. E. Feller. 1992. Long-term, trends of subtidal macrobenthos in North Inlet, South Carolina.Hydrobiologia 231:13–40.Google Scholar
  125. Sherr, B. F., E. B. Sherr, andJ. McDaniel. 1992. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages.Applied and Environmental Microbiology 58:2381–2385.Google Scholar
  126. Sherr, B. F., E. B. Sherr, andC. Pedros-Alio. 1989. Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water.Marine Ecology Progress Series 54:209–219.Google Scholar
  127. Sherr, E. B., B. F. Sherr, R. D. Fallon, andS. Y. Newell. 1986. Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton.Limnology and Oceanography 33: 177–183.Google Scholar
  128. Sherr, E. B., B. F. Sherr, andJ. McDaniel. 1991. Clearance rates of <6 μm fluorescently labeled algae (FLA) by estuarine protozoa: Potential grazing impact of flagellates and ciliates.Marine Ecology Progress Series 69:81–92.Google Scholar
  129. Sigmon, D. E. andL. B. Cahoon. 1997. Comparative effects of benthic microalgae and phytoplankton on dissolved silica fluxes.Aquatic Microbial Ecology 13:275–284.Google Scholar
  130. Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level rise, p. 241–259.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, Orlando.Google Scholar
  131. Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1988. Sediment transport and trapping in marsh systems: Implications of tidal flux studies.Marine Geology 80:37–59.Google Scholar
  132. Sullivan, M. J. andC. A. Monreiff. 1990. Edaphic algea are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 62:149–159.Google Scholar
  133. Sun, H. andD. J. Furbish. 1997. Annual precipitation and river discharges in Florida in response to El Niño- and La Niña-sea surface temperature anomalies.Journal of Hydrology 199:74–87.Google Scholar
  134. Tester, P., M. Geesey, C. Guo, H. Paerl, andD. Millie. 1995. Evaluating phytoplankton dynamics in the Newport River estuary (North Carolina, USA) by HPLC-derived pigment profiles.Marine Ecology Progress Series 124:237–245.Google Scholar
  135. Tester, P. A., R. Stumpf, F. M. Vukovich, P. K. Fowler, andJ. T. Turner. 1991. An expatriate red tide bloom: Transport, distribution and persistence.Limnology and Oceanography 36: 1053–1061.Google Scholar
  136. Thayer, G. W. 1971. Phytoplankton production and the distribution of nutrients in a shallow unstratified estuarine system near Beaufort, N.C.Chesapeake Science 12:240–253.Google Scholar
  137. Thayer, G. W., D. E. hoss, M. A. Kjelson, W. F. Hettler, and M. W. Lacroix. 1974. Biomass of zooplankton in the Newport River Estuary and the influence of postlarval fishes.Chesapeake Science 15:9–16.Google Scholar
  138. Thayer, G. W., D. A. Wolfe, andR. B. Williams. 1975. The impact of man on seagrass systems.American Scientist 63:288–296.Google Scholar
  139. Tissue, T., S. Lewis, H. Wood, J. Kender, andJ. K. Aboh. 1994. Effects of Hurricane Hugo on sediment quality and distribution in the Charleston harbor estuary, USA, p. 61–66.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
  140. Turner, R. E. 1976. Geographic variations in salt marsh macrophyte production: A review.Contributions in Marine Science (Texas) 20:47–68.Google Scholar
  141. Valiela, I., J. M. Teal, S. D. Allen, R. V. Van Etten, D. Goehringer, andS. Volkmann. 1985. Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of aboveground organic matter.Journal of Experimental Marine Biology and Ecology 89:29–54.Google Scholar
  142. Van Dolah, R. F. andG. S. Anderson. 1991. Effects of Hurricane Hugo on salinity and dissolved oxygen conditions in Charleston Harbor estuary.Journal of Coastal Research 8:83–94.Google Scholar
  143. Verity, P. G., J. A. Yoder, J. S. Bishop, J. R. Nelson, D. B. Craven, J. O. Blandon, C. Y. Robertson, andC. R. Tronzo. 1993. Composition, productivity, and nutrient chemistry of a coastal ocean planktonic food web.Continental Shelf Research 13:741–776.Google Scholar
  144. Vernberg, F. J. 1993. Salt-marsh processes: A review.Environmental Toxicology and Chemistry 12:2167–2195.Google Scholar
  145. Vernberg, F. J., W. B. Vernberg, E. Blood, A. Fortner, M. Fulton, H. McKellar, W. Michener, G. Scott, T. Siewicki, andK. El Figi. 1992. Impact of urbanization on high-salinity estuaries in the Southeastern United States.Netherlands Journal of Sea Research 30:239–248.Google Scholar
  146. Virnstein, R. W., W. G. Nelson, F. G. Lewis III, andR. K. Howard. 1984. Latitudinal patterns in seagrass epifauna: Do patterns exist and can they be explained?Estuaries 7:310–330.Google Scholar
  147. Vogel, R. L., B. Kjerfve, andL. R. Gardner. 1996. Inorganic sediment budget for North Inlet salt marsh, South Carolina, U.S.A..Mangroves and Salt Marshes 1:23–35.Google Scholar
  148. Ward, L. G. 1981. Suspended-material transport in marsh tidal channels, Kiawah Island, South Carolina.Marine Geology 40: 139–154.Google Scholar
  149. Weinstein, M. P. 1979. Shallow marsh habitat as primary nurseries for fishes and shellfish, Cape Fear River, North Carolina.Fishery Bulletin 77:339–357.Google Scholar
  150. Wetz, M., A. J. Lewttus, E. T. Koepfler, andK. C. Hayes. 1999. Seasonal and spatial variation within the microzooplankton community of North Inlet estuary, SC, p. 1263–1267.In R. D. Yearout (ed.), Proceedings National Conference on Undergraduate Research 1999, Volume 4. The University of North Carolina at Asheville, Ashville, North Carolina.Google Scholar
  151. Wilkinson, M. 1980. Estuarine benthic algae and their environment: A review, p. 425–486.In J. H. Price, D. E. G. Irvine and W. F. Farnham (eds.), The Shore Environment, Volume 2. Academic Press, New York.Google Scholar
  152. Windom, H. L., W. J. Neal, andK. C. Beck. 1971. Mineralogy of sediments in three Georgia estuaries.Journal of Sedimentary Petrology 41:497–504.Google Scholar
  153. Woodmansee, R. A. 1958. The seasonal distribution of the zooplankton off Chicken Key in Biscayne Bay, Florida.Ecology 39: 247–262.Google Scholar
  154. Zeitzschel, B. 1990. Zoogeography of marine protozoa: An overview emphasizing distribution of planktonic forms, p. 139–185.In G. M. Capriulo (ed.), Ecology of Marine Protozoa. Oxford University Press, New York.Google Scholar
  155. Zieman, J. C. 1975. Tropical seagrass systems and pollution, p. 63–74.In E. J. F. Wood and R. E. Johannes (eds.), Tropical Marine Pollution. Elsevier, New York.Google Scholar
  156. Zieman, J. C. 1982. The Ecology of the Seagrases of South Florida: A Community Profile. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, D.C..Google Scholar
  157. Zieman, J. C. andR. Wetzel. 1980. Methods and rates of productivity in seagrasses, p. 87–116.In R. C. Phillips and C. P. McRoy (eds.), Handbook of Seagrass Biology. Garland STMP Press, New York.Google Scholar

Sources of Unpublished Materials

  1. Moran, M. A. personal communication. Department of Marine Sciences, University of Georgia, Athens, Georgia 30602.Google Scholar
  2. Morton, S. L. personal communication. Marine Biotoxins Program, National Ocean Service, Charleston Laboratory, 219 Fort Johnson Road, Charleston, South Carolina 29422.Google Scholar
  3. North Carolina Department of Water Quality. 1996. Cape Fear River Basinwide Water Quality Management Plant North Carolina Division of Water Quality, Water Quality Section, P.O. Box 29535, Raleigh, North Carolina.Google Scholar

Copyright information

© Estuarine Research Federation 2000

Authors and Affiliations

  • Richard Dame
    • 7
  • Merryl Alber
    • 1
  • Dennis Allen
    • 2
  • Michael Mallin
    • 3
  • Clay Montague
    • 4
  • Alan Lewitus
    • 2
  • Alice Chalmers
    • 1
  • Robert Gardner
    • 2
  • Craig Gilman
    • 7
  • Björn Kjerfve
    • 2
  • Jay Pinckney
    • 5
  • Ned Smith
    • 6
  1. 1.University of GeorgiaAthens
  2. 2.Baruch Marine LaboratoryUniversity of South CarolinaGeorgetown
  3. 3.University of North Carolina at WilmingtonWilmington
  4. 4.University of FloridaGainesville
  5. 5.Texas A & M UniversityCollege Station
  6. 6.Harbor Branch Oceanographic InstituteFort Pierce
  7. 7.Marine ScienceCoastal Carolina UniversityConway

Personalised recommendations