, Volume 24, Issue 5, pp 770–786 | Cite as

Seasonal and tidal monthly patterns of particulate matter dynamics in the Columbia River estuary

  • Annika M. V. Fain
  • David A. Jay
  • Doug J. Wilson
  • Phil M. Orton
  • Antonio M. Baptista


We investigated seasonal and tidal-monthly, suspended particulate matter (SPM) dynamics in the Columbia River estuary from May to December 1997 using acoustic backscatter (ABS) and velocity data from four long-term Acoustic Doppler Profiler (ADP) moorings in or near the estuarine turbidity maximum (ETM). ABS profiles were calibrated and converted to total SPM profiles using pumped SPM samples and optical backscatter (OBS) data obtained during three seasonal cruises. Four characteristic settling velocity (W s) classes were defined from Owen Tube samples collected during the cruises. An inverse analysis, in the form of a non-negative least squares minimization, was used to determine the contribution of the four,W s-classes to each, total SPM profile. The outputs from the inverse analyses were 6–8 mo time-series ofW s-specific SPM concentration and transport profiles at each mooring. The profiles extended from the free surface to 1.8–2.7 m from the bed, with 0.25–0.50 m resolution. These time series, along with Owen Tube results and disaggregated size data, were used to investigate SPM dynamics. Three non-dimensional parameters were defined to investigate how river flow and tidal forcing affect particle trapping: Rouse numberP (balance between vertical mixing and settling) trapping efficiencyE (ratio of maximum SPM concentration in the estuary to fluvial source concentration), and advection numberA (ratio of height of maximum SPM concentration to friction velocity). The most effective particle trapping (maximum values ofE) occurs on low-flow neap tides. The location of the ETM and the maximal trapping migrated seasonally in a manner consistent with the increase in salinity intrusion length after the spring freshet. Maximum advection (high values ofA) occurred during highly stratified neap tides.


Suspended Particulate Matter Spring Tide Neap Tide Inverse Analysis Suspended Particulate Matter Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, G. P., J. C. Salomon, P. Bassoullet, Y. Du Pehoat, andC. De Grandpre. 1980. Effects of tides on mixing and suspended sediment in macrotidal estuaries.Sedimentary Geology 26:69–80.CrossRefGoogle Scholar
  2. Baptista, A. M., M. Wilkin, P. Pearson, P. Turner, C. McCandlish, andP. Barrett. 1999. Coastal and estuarine forecast systems: A multi-purpose infrastructure for the Columbia River.Earth System Monitor 9:1–5.Google Scholar
  3. Baptista, A. M., M. Wilkin, P. Pearson, P. Turner, C. McCandlish, P. Barrett, S. Das, W. Sommerfield, M. Qi, N. Nangia, D. Jay, D. Long, C. Pu.J. Hunt, Z. Yang, E. Myers, J. Darland, andA. Farrenkopf. 1998. Towards a multi-purpose forecast system for the Columbia River esturay, p. 1–6.In Ocean Community Conference ’98. Marine Technology Society, Baltimore, Maryland.Google Scholar
  4. Baross, J. A., B. Crump, andC. A. Simenstad. 1994. Elevated ‘microbial loop’ activities in the Columbia River estuary turbidity maximum, p. 459–464.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries. Olsen and Olsen: Frendesborg, Denmark.Google Scholar
  5. Beach, R. A. andR. W. Sternberg. 1988. Suspended sediment transport in the surf zone: Response to cross-shore infragravity motion.Marine Geology 80:61–79.CrossRefGoogle Scholar
  6. Bokuniewicz, H. andC. L. Arnold. 1984. Characteristics of suspended sediment transport in the lower Hudson River.Northcastern Environmental Science 3:184–189.Google Scholar
  7. Bosman, J. J., E. T. J. M. van der Velden, andC. H. Hulsbergen. 1987. Sediment concentration measurement by transverse suction.Coastal Engineering 11:353–370.CrossRefGoogle Scholar
  8. Crump, B. C. andJ. A. Baross. 1996. Particle-attached bacteria and heterotrophic plankton associated with the Columbia River estuarine turbidity maxima.Marine Ecology Progress Series 138:265–273.CrossRefGoogle Scholar
  9. Drake, D. E. andD. A. Cacchione. 1989. Estimate of, the suspended sediment reference concentration (Ca) and resuspension coefficient (γ0) from near-bottom observations on the California shelf.Contimental Shelf Research 9:51–64.CrossRefGoogle Scholar
  10. Dyer, K. R., J. Cornelisse, M. P. Dearnaley, M. J. Fennessy, S. E. Jones, J. Kappenberg, I. N. McCave, M. Pejrup, W. Puls, W. van Leussen, andK. Wolfstein. 1996. A comparison of in situ techniques for estuarine floc settling velocity measurements.Journal of Sea Research 36:15–29.CrossRefGoogle Scholar
  11. Fain, A. M. V. 2000. Suspended particulate dynamics in the Columbia River estuary. M.S. Thesis, Oregon Graduate Institute, Portland, Oregon.Google Scholar
  12. Gelfenbaum, G. 1983. Suspended-sediment response to semidiurnal and fortnightly tidal variations in a mesotidal estuary: Columbia River, USA.Marine Geology 52:39–57.CrossRefGoogle Scholar
  13. Giese, B. S. andD. A. Jay. 1989. Modeling tidal energetics of the Columbia River estuary.Estuaries, Coastal and Shelf Science 29: 549–571.CrossRefGoogle Scholar
  14. Glenn, S. M. andW. D. Grant. 1987. A suspended sediment stratification correction for combined wave and current flows.Journal of Geophysical Research 92:8244–8264.CrossRefGoogle Scholar
  15. Grabemann, I. andG. Krause. 1989. Transport processes of suspended matter derived from time series in a tidal estuary.Journal of Geophysical Research 94:14373–14379.CrossRefGoogle Scholar
  16. Green, M. O., R. G. Bell, T. J. Dolphin, andA. Swales. 2000. Silt and sand transport in a deep tidal channel of a large estuary (Manukau Harbour, New Zealand).Marine Geology 163:217–240.CrossRefGoogle Scholar
  17. Hanes, D. M., C. E. Vincent, D. A. Huntley, andT. L. Clarke. 1988. Acoustic measurements of suspended sand concentration in the C2S2 experiment at Stanhope Lane, Prince Edward Island.Marine Geology 81:185–196.CrossRefGoogle Scholar
  18. Holdaway, G. P. andP. D. Thorne. 1997. Determination of a fast and stable algorithm to evaluate suspended sediment parameters from high resolution acoustic backscatter systems, p. 86–92.In 7th International Conference on Electronic Engineering in Oceanography, Piscataway, New Jersey. Institute of Electrical and Eelectronics Engineers, Southampton Oceanography Centre. UK.Google Scholar
  19. Hughes, F. W. andM. Rattray. 1980. Salt flux and mixing in the Columbia River estuary.Estuarine and Coastal Marine Science 10:479–492.CrossRefGoogle Scholar
  20. Jay, D. A., W. R. Geyer, andD. R. Montgomery. 2000. An ecological perspective on estuarine classification, p. 149–176.In J. E. Hobbie (ed.), Estuarine Science, A Synthetic Approach to Research and Practice. Island, Press, Washington, D.C.Google Scholar
  21. Jay, D. A. andJ. D. Musiak. 1994. Particle trapping in estuarine tidal flows.Journal of Geophysical Research 99:20445–20461.CrossRefGoogle Scholar
  22. Jay, D. A., P. M. Orton, D. J. Wilson, A. M. V. Fain, and J. McGinity. In review. Particle trapping in stratified estuaries—Definition of a parameter space.Continental Shelf Research.Google Scholar
  23. Jay, D. A. andP. Naik. 2000. Climate effects on Columbia River sediment transport, p. 97–106.In G. Gelfenbaum and G. Kaminsky (eds.), Southwest Washington Coastal Erosion Workshop Report 1999. Open File Report. U.S. Geological Survey, Washington, D.C.Google Scholar
  24. Jay, D. A. andJ. D. Smith. 1990. Circulation, density distribution and neap-spring transitions in the Columbia River estuary:Progress in Oceanography 25:81–112.CrossRefGoogle Scholar
  25. Kay, D. J., D. A. Jay, andJ. D. Musiak. 1996. Salt transport through an estuarine cross-section calculated from moving vessel ADCP and CTD data buoyancy effects on coastal and estuarine dynamics, p. 195–212.In D. G. Aubrey and C. Friedrichs (eds.). Buoyancy Effects on Coastal and Estuarine Dynamics. American Geophysical Union, Washington, D.C.Google Scholar
  26. Kaiser, J. F. 1974. Non-recursive digital filter design, using the lo-sinh window function, p. 20–23In Proceedings of 1974 Institute of Electrical and Eelectronics Engineers Symposium on Circuits and Systems, Piscataway, New Jersey. Institute of Electrical and Eelectronics Engineers, Southampton Oceanography Centre, UK.Google Scholar
  27. Kineke, G. C. andR. W. Sternberg. 1989. The effect of particle settling velocity on computed suspended sediment concentration profiles.Marine Geology 90:159–174.CrossRefGoogle Scholar
  28. Kineke, G. C. andR. W. Sternberg. 1992. Measurements of high concentration suspended sediments using the optical backscatterance sensor.Marine Geology 108:253–258.CrossRefGoogle Scholar
  29. Lawson, C. L. andR. J. Hanson. 1974. Solving Least Square Problems. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  30. Lee, H. L. andD. M. Hanes. 1995. Direct inversion method to measure the concentration profile of suspended particles using backscattered sound.Journal of Geophysical Research 100: 2649–2657.CrossRefGoogle Scholar
  31. Lee, H. L. andD. M. Hanes. 1996. Comparison of field observations of the vertical distribution of suspended sand and its prediction by models.Journal of Geophysical Research 101:3561–3572.CrossRefGoogle Scholar
  32. Libicki, C., K. Bedford, andJ. Lynch. 1989. The interpretation and evaluation of a 3-MHz acoustic backscatter device for measuring benthic boundary layer sediment dynamics.Journal of Acoustical Society of America 85:1501–1511.CrossRefGoogle Scholar
  33. Long, C. E. 1981. A simple model for time-dependent stably stratified turbulent boundary layers. Ph.D. Thesis. University of Washington, Department of Oceanography, Seattle Washington.Google Scholar
  34. LMER Coordinating Committee (Boynton, W., J. T Hollibaugh, D. Jay, M. Kemp, J. Kremer, C. Simenstad, S. V. Smith, and I. Valiela). 1992. Understanding changes in coastal environments: The Land Margin Ecosystems Research Program.EOS 73:481–485.CrossRefGoogle Scholar
  35. Lucas, L. V., J. K. Thompson, J. R. Koseff, andS. B. Monismith. 1999. Processes governing phytoplankton bloom in estuaries-Part I, The role of horizontal transport.Marine Ecology Progress Series 187:1–16.CrossRefGoogle Scholar
  36. Ludwig, K. A. andD. M. Hanes. 1990. Laboratory evaluation of optical backscatterance suspended solids sensors exposed to sand-mud mixtures.Marine Geology 94:173–179.CrossRefGoogle Scholar
  37. Lynch, J. F. 1985. Theoretical analysis of ABSS data for Hebble.Marine Geology 66:277–289.CrossRefGoogle Scholar
  38. Lynch, J. F. andY. C. Agrawal. 1991. A model-dependent method for inverting vertical profiles of scattering to obtain particle size spectra in boundary layers.Marine Geology 99:387–401.CrossRefGoogle Scholar
  39. Lynch, J. F., T. F. Gross, B. H. Brumley, andR. A. Filyo. 1991. Sediment concentration profiling in HEBBLE using a 1-MHz acoustic backscatter system.Marine Geology 99:361–385.CrossRefGoogle Scholar
  40. Lynch, J. F., J. D. Irish, C. R. Sherwood, andY. C. Agrawal. 1994. Determining suspended sediment particle size information from acoustical and optical backscatterance measurements.Continental Shelf Research 14:1139–1165.CrossRefGoogle Scholar
  41. Middleton, G. V. andJ. B. Southard. 1984. Mechanics of Sediment Movement. Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma.Google Scholar
  42. Morgan, C. A., J. R. Cordell, andC. A. Simenstad. 1997. Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity maxima region.Marine Biology 129:309–317.CrossRefGoogle Scholar
  43. Nichols, M. M. andR. B. Biggs. 1985. Estuaries, p. 77–186.In R. A. Davis, Jr. (ed.), Coastal Sedimentary Environments. Springer-Verlag, New York.Google Scholar
  44. Nowell, A. R. M. 1983. The benthic boundary layer and sediment transport.Reviews in Geophysics and Space Physics 21:1181–1192.CrossRefGoogle Scholar
  45. Prahl, F. G., L. F. Small, andB. Eversmeyer. 1997. Biogeochemical characterization of suspended particulate matter in the Columbia River estuary.Marine Ecology Progress Series 160:173–184.CrossRefGoogle Scholar
  46. Reed, D. J. andJ. Donovan. 1994. The character and composition of the Columbia River estuarine turbidity maximum, p. 445–450.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries, Olsen and Olsen, Fredensborg, Denmark.Google Scholar
  47. Rouse, H. 1937. Modern conceptions of the mechanics of fluid turbulence.Transactions of the American Society of Civil Engineers 102:463–541.Google Scholar
  48. Schaffsma, A. S. andA. E. Hay. 1977. Attenuation in suspensions of irregularly shaped sediment particles: A two-parameter equivalent spherical scatterrer model.Journal of Acoustical Society of America 102:1485–1502.CrossRefGoogle Scholar
  49. Sherwood, C. R. andJ. S. Creager. 1990. Sdimentary, geology of the Columbia River estuary.Progress in Oceanography 25:15–79.CrossRefGoogle Scholar
  50. Sherwood, C. R., D. A. Jay, R. B. Harvey, P. Hamilton, andC. A. Simenstad. 1990. Historical changes in the Columbia River estuary.Progress in Oceanography 25:299–352.CrossRefGoogle Scholar
  51. Simenstad, C. A., D. A. Jay, andC. R. Sherwood. 1992. Impacts of watershed management on land-margin ecosystems: The Columbia River estuary as a case study, p. 266–306.In R. Naimen (ed.), New Perspectives for Watershed Management— Balancing Long-term Sustainability with Cumulative Environmental Change. Springer-Verlag, New York.Google Scholar
  52. Simenstad, C. A., L. F. Smith, andC. D. MacIntire. 1990. Consumption processes and food web structure in the Columbia River estuary.Progress in Oceanography 25:271–299.CrossRefGoogle Scholar
  53. Smith, J. D. andS. R. McLean. 1977. Spatially averaged flow over a wavy surface.Journal of Geophysical Research 82:1735–1746.CrossRefGoogle Scholar
  54. Smith, S. V., J. T. Hollibaugh, S. J. Dollar, andS. Vink. 1991. Tomales Bay metabolism: C-N-P stoichiometry and ecosystem heterotrophy at the land-sea interface.Estuarine, Coastal and Shelf Science 33:223–257.CrossRefGoogle Scholar
  55. Sommerfield, W. N. 1999. Variability of residual properties in the Columbia River estuary: Pilot application of emerging technologies. Masters Thesis. Oregon Graduate Institute of Science and Technology, Portland, Oregon.Google Scholar
  56. Stanton, T. K., D. Chu, andP. H. Wiebe. 1998. Sound scattering by several zooplankton groups II: Scattering models.Journal of the Acoustical Society America 103:236–253.CrossRefGoogle Scholar
  57. Sternberg, R. W., I. Berhane, andA. S. Ogston. 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf.Marine Geology 154:43–53.CrossRefGoogle Scholar
  58. Sundborg, Å 1956. The river Klarläven a study of fluvial process.Geograpfiska Annaler 2–3:233–235.Google Scholar
  59. Thevenot, M. M., andN. C. Kraus. 1993. Comparison of acoustical and optical measurements of suspended material in the Cheasapeake estuary.Journal of Marine Environmental Engineering 1:65–79.Google Scholar
  60. Thorne, P. D., C. E. Vincent, P. J. Hardcastle, S. Rehman, andN. Pearson. 1991. Measuring suspended sediment concentrations using acoustic backscatter devices.Marine Geology 98:7–16.CrossRefGoogle Scholar
  61. U.S Geological Survey. 1971. Distribution of Radionuclides in Bottom Sediments of the Columbia River estuary. U.S. Department of the Interior, Portland Oregon.Google Scholar
  62. Vincent, C. E. andM. O. Green. 1990. Field measurements of the suspended sand concentration profiles and fluxes and of the resuspension coefficient γ0 over a rippled bed.Journal of Geophysical Research 94:11591–11601.CrossRefGoogle Scholar
  63. Young, R. A., J. T. Merrill, T. L. Clarke, andJ. R. Proni., 1982. Acoustic profiling of suspended sediments in the marine bottom boundary layer.Geophysical Research Letters 9:175–178.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2001

Authors and Affiliations

  • Annika M. V. Fain
    • 1
  • David A. Jay
    • 2
  • Doug J. Wilson
    • 2
  • Phil M. Orton
    • 2
  • Antonio M. Baptista
    • 2
  1. 1.School of OceanographyUniversity of WashingtonSeattle
  2. 2.Environmental Science and EngineeringOregon Graduate InstituteBeaverton

Personalised recommendations