, Volume 24, Issue 1, pp 126–134 | Cite as

Selective feeding of the oystercrassostrea gigas fed on a natural microphytobenthos assemblage



In estuarine ecosystems, microphytobenthos resuspended by tidal currents often represents a large part of the food supply available to bivalves which feed selectively. This study investigated the feeding behavior of the Pacific oysterCrassostrea gigas (Thunberg) relative to a natural microphytobenthic assemblage and the effect on the structure of this assemblage. Oysters were fed only benthic microalgae collected on the intertidal mud flats of Bourgneuf Bay (France) at a suspended particulate matter concentration above the threshold of pseudofeces production. All species in the assemblage were endemic diatoms characteritic of tidal mud flat environments. Four dominant ones, which were all solitary cells with spear-shaped frustules [Navicula ammophila (Grunow),Navicula rostellata (Kützing),Plagiotropis lepidoptera (Kuntze), andStaurophora amphioxys (Mann)] represented more than 95% of the 16 species involved. Analysis of feeding processes showed that the retention of the four main diatoms was not significantly different, but that two species, the smallest (N. ammophila [22×4 μm]) and the largest (P. lepidoptera [60×15 μm]), were preferentially ingested. The study of post-ingestive selection revealed that these two species were also preferentially digeted, i.e., preferentially directed into the digestive diverticulum, when they passed through the gut ofC. gigas. Cell size and shape did not appear to account for pre-ingestive and post-ingestive selection. The composition of the assemblage was significantly modified by oyster filtration, although the retention rates of the four main species were not significantly different. The composition of microalgae in pseudofeces and feces as a result of pre-ingestive and post-ingestive selection differed from that in seawater.


Microalgae Bivalve Suspended Particulate Matter Navicula Marine Ecology Progress Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aleem, A.. 1950. The diatom community inhabiting the mud flats at Whitstable.New Phytologist 49:174–188.CrossRefGoogle Scholar
  2. Asmus, H. andR. M. Asmus. 1993. Phytoplankton-mussel bed interactions in intertidal ecosystems, p. 57–84.In R. Dame (ed.). Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, North Atlantic Treaty Organization, Advanced Study Institute Series, Volume G 33. Springer-Verlag, Berlin.Google Scholar
  3. Baillie, P. W. andB. L. Welsh. 1980. The effect of tidal resuspension on the distribution of intertidal epipelic algae in an estuary.Estuarine and Coastal Marine Science 10:165–180.CrossRefGoogle Scholar
  4. Barillé, L.,andB. Cognie. 2000. Revival capacity of diatoms in bivalve pseudofaeces and faeces.Diatom Research 15:11–17.Google Scholar
  5. Barillé, L., J. Prou, andS. Bougrier. 1993. No influence of food quality, but ration-dependent retention efficiencies in the Japanese oysterCrassostrea gigas.Journal of Experimental Marine Biology and Ecology 171:91–106.CrossRefGoogle Scholar
  6. Barillé, L., J. Prou, M. Héral, andD. Razet. 1997. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oysterCrassostrea gigas (Thunberg).Journal of Experimental Marine Biology and Ecology 212:149–172.CrossRefGoogle Scholar
  7. Bayne, B. L., A. J. S. Hawkins, andE. Navarro. 1987. Feeding and digestion by the musselMytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations.Journal of Experimental Marine Biology and Ecology 111:1–22.CrossRefGoogle Scholar
  8. Boltovskoy, D., I. Izaguirre, andN. Correa. 1995. Feeding selectivity ofCorbicula fluminea (Bivalvia) on natural phytoplankton.Hydrobiologia 312:171–182.CrossRefGoogle Scholar
  9. Boucaud-Camou, E., C. Lebesnerais, P. Lubet, andI. Lihrmann. 1985. Dynamique et enzymologie de la digestion chezCrassostrea gigas (Thunberg). Bases biologiques de l'aquaculture, Montpellier, 1983.Actes de colloques du CNEXO 1:75–96.Google Scholar
  10. Bougrier, S., A. J. S. Hawkins, andM. Héral. 1997. Preingestive selection of different microalgal mixtures inCrassostrea gigas andMytilus edulis, analyzed by flow cytometry.Aquaculture 150: 123–134.CrossRefGoogle Scholar
  11. Bricelj, V. M., A. E. Bass, andG. R. Lopez. 1984. Absorption and gut passage time of microalgae in a suspension feeder: An evaluation of the51Cr:14c twin tracer technique.Marine Ecology Progress Series 17:57–63.CrossRefGoogle Scholar
  12. Brown, M. R., M. A. MacCausland, andK. Kowalski. 1998. The nutritional value of four Australian microalgal strains fed to Pacific oysterCrassotrea gigas spat.Aquaculture 165:281–293.CrossRefGoogle Scholar
  13. Chrétiennot-Dinet, M. J., D. Vaulot, R. Galois, A. M. Spano, andR. Robert. 1991. Analysis of larval oyster grazing by flow cytometry.Journal of Shellfish Research 10:457–463.Google Scholar
  14. Courties, C., A. Vaquer, M. Troussellier, J. Lautier, M. J. Chrétiennot-Dinet, J. Neveux, C. Machado, andH. Claustre. 1994. Smallest eukaryotic organism.Nature 370:255.CrossRefGoogle Scholar
  15. Cucci, T. L., S. F. Shumway, R. L. Newell, R. Selvin, R. R. L. Guillard, andC. M. Yentsch. 1985. Flow cytometry: A new method for characterization of differential ingestion, digestion and egestion by suspension feeders.Marine Ecology Progress Series 24:201–204.CrossRefGoogle Scholar
  16. Defossez, J. M. andA. J. S. Hawkins. 1996. Selective feeding in shellfish: Size-dependent rejection of large particles within pseudofeces fromMytilus edulis, Ruditapes philippinarum, andTapes decussatus.Marine Biology 129:139–147.CrossRefGoogle Scholar
  17. De Jonge, V. N. andJ. E. E. Van Beusekom. 1992. Contribution of resuspended microphytobenthos to total phytoplankton in the Ems estuary and its possible role for grazers.Netherlands Journal of Sea Research 30:91–105.CrossRefGoogle Scholar
  18. Fréchette, M. andJ. Grant. 1991. An in situ estimation of the effect of wind-driven resuspension on the growth of the musselMytilus edulis L.Journal of Experimental Marine Biology and Ecology 148:201–213.CrossRefGoogle Scholar
  19. Fritz, L. W., R. A. Lutz, M. A. Foote, C. L. Van Dover, andJ. W. Ewart. 1984. Selective feeding and grazing rates of oyster (Crassostrea virginica) larvae on natural phytoplankton assemblages.Estuaries 7:513–518.CrossRefGoogle Scholar
  20. Galtsoff, P. S. 1964. The American oyster,Crassostrea virginica (Gmelin).U.S. Fisheries and Wildlife Services Fisheries Bulletin 64: 1–480.Google Scholar
  21. Grant, J., C. T. Enright, andA. Griswold. 1990. Resuspension and growth ofOstrea edulis: A field experiment.Marine Biology 104:51–59.CrossRefGoogle Scholar
  22. Grant, J., E. L. Mills, andC. M. Hopper. 1986. A chlorophyll budget of the sediment-water interface and the effect of stabilizing biofilms on particle fluxes.Ophelia 26:207–219.Google Scholar
  23. Haure, J. and J. P. Baud. 1995. Approche de la Capacité Trophique Dans un Bassin Ostréicole (Baie de Bourgneuf). Rapports Internes de la Direction des Ressources Vivantes de l'Institut Francais de Recherche pour l'Exploitation de la Mer, No. RIDRV-95-16/RA-Bouin. Nantes, France.Google Scholar
  24. Jørgensen, C. B. 1990. Bivalve Fitter-Feeding: Hydrodynamics, Bioenergetics, Physiology and Ecology. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
  25. Leroux, S. 1956. Phytoplancton et contenus stomacaux d'huîtres portugaises (Gryphea angulata Lmk) dans le bassin d'Arcachon.Revue des Travaux de l'Institut des Pêches Maritimes 20:163–170.Google Scholar
  26. Loosanoff, V. L. andJ. B. Engle. 1947. Effect of different concentrations of micro-organisms on the feeding of oysters (O. virginica).U.S. Fisheries and Wildlife Services Fisheries Bulletin 51: 31–57.Google Scholar
  27. Lorenzen, C. J. 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equations.Limnology and Oceanography 12:343–346.Google Scholar
  28. MacDonald, B. A. andJ. E. Ward. 1994. Variation in food quality and particle selectivity in the sea scallopPlacopecten magellancus (Mollusca: Bivalvia).Marine Ecology Progress Series 108: 251–264.CrossRefGoogle Scholar
  29. MacIntyre, H. L., R. J. Geider, andD. C. Miller. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production.Estuaries 19:186–201.CrossRefGoogle Scholar
  30. Miura, T. andT. Yamashiro. 1990. Size selective feeding ofAnodonta calipygos, a phytoplanktivorous freshwater bivalve, and viability of egested algae.Japanese Journal of Limnology 51:73–78.Google Scholar
  31. Muschenheim, D. K. andC. R. Newell. 1992. Utilization of seston flux over a mussel bed.Marine Ecology Progress Series 85: 131–136.CrossRefGoogle Scholar
  32. Newell, R. I. E. andS. E. Shumway. 1993. Grazing on natural particulates by bivalve molluscs: A spatial and temporal perspective, p. 85–148.In R. Dame (ed.), Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, North Atlantic Treaty Organization, Advanced Study Institute Series, Volume G 33. Springer-Verlag, Berlin.Google Scholar
  33. Newell, R. I. E., S. E. Shumway, T. L. Cucci, andR. Selvin. 1989. The effects of natural seston particle size and type on feeding rates, feeding selectivity and food resource availability for the musselMytilus edulis L., at bottom culture sites in Maine.Journal of Shellfish Research 8:187–196.Google Scholar
  34. Nicotri, M. E. 1977. Grazing effects of four marine intertidal herbivores on the microflora.Ecology 58:1020–1032.CrossRefGoogle Scholar
  35. Olsson, P., E. Granéli, P. Carlsson, andP. Abreu. 1992. Structuring a postspring phytoplankton community by manipulation of trophic interactions.Journal of Experimental Marine Biology and Ecology 158:249–266.CrossRefGoogle Scholar
  36. Palmer, R. E. andL. G. Williams. 1980. Effect of particle concentration on filtration efficiency of the bay scallopArgopecten irradians and the oysterCrassostrea virginica.Ophelia 19:163–174.Google Scholar
  37. Paulmier, G. 1972. Seston—Phytoplancton et microphytobenthos en rivière d'Auray: Leur rôle dans le cycle biologique des huîtres,Ostrea edulis L. Doctoral dissertation, University of Nantes.Google Scholar
  38. Prins, T. C., V. Escavarage, A. C. Smaal, andJ. C. H. Peeters. 1995. Nutrient cycling and phytoplankton dynamics in relation to mussel grazing in a mesocosm experiment.Ophelia 41: 289–315.Google Scholar
  39. Prins, T. C. andA. C. Smaal. 1994. The role of the blue musselMytilus edulis in the cycling of nutrients in the Oosterchelde estuary (The Netherlands).Hydrobiologia 282/283:413–429.Google Scholar
  40. Prins, T. C., A. C. Smaal, andR. F. Dame. 1998. A review of the feedbacks between bivalve grazing and ecosystem processes.Aquatic Ecology 31:349–359.CrossRefGoogle Scholar
  41. Rassoulzadegan, F., L. Fenaux, andR. Strathmann. 1984. Effect of flavor and size on selection of food by suspensionfeeding plutei.Limnology and Oceanography 29:357–361.CrossRefGoogle Scholar
  42. Ravail-Legrand, B., J. M. Robert, S. Y. Maestrini, andM. Héral. 1993. Variabilité à court terme, liée à l'onde de marée, propriétés physico-chimiques et biologiques des eaux du panache de dilution de la Charente, en période d'étiage estival.Journal de la Recherche Océanographique 18:64–66.Google Scholar
  43. Riéra, P. andP. Richard. 1996. Isotopic determination of food sources ofCrassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron.Estuarine, Coastal and Shelf Science 42:347–360.CrossRefGoogle Scholar
  44. Riisgård, H. U. 1988. Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves.Marine Ecology Progress Series 45:217–223.CrossRefGoogle Scholar
  45. Rincé, Y. 1993. Les diatomées marines de la région de Basse-Loire: Inventaire, distribution spatio-temporelle et devenir expérimental des peuplements naturels d'écosystèmes ostréicoles. Doctoral dissertation, University of Nantes, France.Google Scholar
  46. Robert, R., T. Noel, andR. Galois. 1989. The food value of five unicellular diatoms to the larvae ofCrassostrea gigas Thunberg,European Aquaculture Society Special Publication 10:215–216.Google Scholar
  47. Shpigel, M., B. J. Barber, andR. Mann. 1992. Effects of elevated temperature on growth, gametogenesis, physiology and biochemical composition in diploid and triploid Pacific oysters,Crassostrea gigas Thunberg.Journal of Experimental Marine Biology and Ecology 161:15–25.CrossRefGoogle Scholar
  48. Shumway, S. E., T. L. Cucci, R. C. Newell, andC. M. Yentsch. 1985. Particle selection, ingestion, and absorption in filterfeeding bivalves.Journal of Experimental Marine Biology and Ecology 91:77–92.CrossRefGoogle Scholar
  49. Simonsen, R. 1962. Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee.Internationale Revue der Gesamten Hydrobiologie (System Beiheft) 1:1–144.Google Scholar
  50. Smaal, A. C. andT. C. Prins. 1993. The uptake of organic matter and the release of inorganic nutrients by bivalve suspension feeder beds, p. 271–298.In R. Dame (ed.), Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, North Atlantic Treaty Organization, Advanced Study Institute Series, Volume G 33. Springer-Verlag, Berlin.Google Scholar
  51. Sokal, R. R. andF. J. Rohlf. 1995. Biometry. The Principles and Practice of Statistics in Biological Research, 3rd edition. W. H. Freeman and Company, New York.Google Scholar
  52. Targett, N. M. andJ. E. Ward. 1991. Bloactive microalgal metabolites: Mediation of subtle ecological interactions in phytophagous suspension-feeding marine invertebrates.Bioorganic Marine Chemistry 4:91–118.Google Scholar
  53. Ward, J. E., J. S. Levinton, S. E. Shumway, andT. Cucci. 1997. Site of particle selection in a bivalve mollusc.Nature 390:131–132.CrossRefGoogle Scholar
  54. Ward, J. E., L. P. Sanford, R. I. E. Newell, andB. A. MacDonald. 1998. Particle sorting in bivalves: In vivo determination of the pallial organs of selection.Marine Biology 131:283–292.CrossRefGoogle Scholar
  55. Ward, J. E. andN. M. Targett. 1989. Influence of marine microalgal metabolites on the feeding behavior of the blue musselMytilus edulis.Marine Biology 101:313–321.CrossRefGoogle Scholar
  56. Yonge, C. M. 1926. Structure and physiology of the organs of feeding and digestion inOstrea edulis.Journal of the Marine Biological Association of the U.K. 14:295–387.CrossRefGoogle Scholar

Source of Unpublished Materials

  1. Haure, J. personal communication. Institut Francais de Recherche pour l'Exploitation de la Mer, Unité de Recherche Aquacole en Pays de la Loire, Station de Bouin, Polder des Champs, 85230 Bouin, France.Google Scholar

Copyright information

© Estuarine Research Federation 2001

Authors and Affiliations

  1. 1.Unité Propre de Recherche de l’Enseignement Supérieur-Equipe d’Accueil 2663Institut des Substances et Organismes de la Mer, Laboratoire de Biologie Marine, Faculté des Sciences et des TechniquesNantes Cedex 3France

Personalised recommendations