, Volume 24, Issue 1, pp 1–17 | Cite as

Beyond light: Physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements

  • Evamaria W. Koch


When determining the suitability of a certain area as a habitat for submersed aquatic vegetation (SAV), light and parameters that modify light (epiphytes, total suspended solids, chlorophyll concentration, nutrients) are the first factors to be taken into consideration. As a result, in the past 10 years, light has been the major focus of SAV research. Even so, we are still unable to explain why SAV often occurs in one area but is absent just a few meters away. Recent studies have shown that SAV may not occur in areas where light levels are adequate but other parameters like wave energy and sulfide concentrations are excessive. It is time to look beyond light when determining SAV habitat requirements. This paper summarizes the impact that physical (waves, currents, tides, and turbulence), geological (sediment grain size and organic matter), and geochemical (mainly sulfide) parameters may have on SAV habitat suitality. Light remains an integral part of the discussion but the focus shifts from maximum depths of distribution (determined mainly by light) to the range SAV can colonize between the maximum and minimum depths of distribution (determined mainly by physical forces). This paper establishes minimum depths of occurrence resulting from the effects of tides and waves, preferred ranges in particle size, organic content, and sulfide, as well as lilfide, as well as limits on currents and waves as related to the capacity to stay rooted at one extreme and diffusive boundary layer constrains at the other.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ackerman, J. D. 1983. Current flow aroundZostera marina plants and flowers: Implications for submarine pollination.Biological Bulletin (Wools Hole) 5:504.Google Scholar
  2. Ackerman, J. D. 1997. Submarine pollination in the marine angiospermZostera marina (Zosteraceae). I. The influence of floral morphology on fluid flow.American Journal of Botany 84: 1099–1109.CrossRefGoogle Scholar
  3. Ackerman, J. D. 1998. The effect of turbulence on the functioning of aquatic organisms, p. 1784–1787.In H. Murakami and J. E. Luco (eds.) Engineering Mechanics: A Force for the 21st Century. Proceeding of the 12th Engineering Mechanics Conference, American Society of Civil Engineers, Reston, Virginia.Google Scholar
  4. Ackerman, J. D. andA. Okubo. 1993. Reduced mixing in a marine macrophyte canopy.Functional Ecology 7:305–309.CrossRefGoogle Scholar
  5. Agawin, N. S. R., C. M. Duarte, andM. D. Fortes. 1996. Nutrient limitation of Philippine seagrasses (Cape Bolinao, NW Philippines): In situ experimental device.Marine Ecology Progress Series 142:233–243.CrossRefGoogle Scholar
  6. Alcoverro, T., J. Romero, C. M. Duarte, andN. Lopez. 1997. Spatial and temporal variations in nutrient limitation of seagrassPosidonia oceanica growth in the NW Mediterranean.Marine Ecology Progress Series 146:155–161.CrossRefGoogle Scholar
  7. Almasi, M. N., C. M. Hoskin, J. R. Reed, andJ. Milo. 1987. Effects of natural and artificialThalassia on rates of sedimentation.Journal of Sedimentary petrology 57:901–906.Google Scholar
  8. Anderson, R. R. 1972. Submersed vascular plants of the Chesapeake Bay and tributaries.Chesapeake Science 13:S87-S89.CrossRefGoogle Scholar
  9. Anderson, S. M. andA. C. Charters. 1982. A fluid dynamics study of seawater flow throughGelidium nudifrons.Limnology and Oceanography 27:399–412.Google Scholar
  10. Anderson, M. R. andJ. Kalff. 1988. Submerged aquatic macrophyte biomass in relation to sediment characteristics in ten temperate lakes.Freshwater Biology 19:115–121.CrossRefGoogle Scholar
  11. Armstrong, W. 1978. Root aeration in the wetland condition, p. 269–297.In D. D. Hook and R. M. M. Crawford (eds.), Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan.Google Scholar
  12. Arnold, R. R., J. C. Cornwell, W. C. Dennison, andJ. C. Stevenson. 2000. Sediment-based reconstruction of submersed aquatic vegetation distribution in the Severn River, a subestuary of Chesapeake Bay.Journal of Coastal Research 16:188–195.Google Scholar
  13. Bach, S. S., J. Borum, M. D. Fortes, andC. Duarte. 1998. Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines.Marine Ecology Progress Series 174:247–256.CrossRefGoogle Scholar
  14. Barko, J. W. andM. Smart. 1983. Effects of organic matter additions to sediment on the growth of aquatic plants.Journal of Ecology 71:161–175.CrossRefGoogle Scholar
  15. Barko, J. W. andM. Smart. 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes.Ecology 67: 1328–1340.CrossRefGoogle Scholar
  16. Batiuk, R. A., R. J. Orth, K. A. Moore, W. C. Stevenson, J. C. Stevenson, L. W. Staver, V. Carter, N. Rybicki, R. E. Hickman, S. Kollar, S. Bieber, andP. Heasly. 1992. Subimerged Aquatic Vegetation Habitat Requirements and Restoration Targets: A Technical Synthesis. USEPA-CBP 68-WO-0043. U.S. Environmental Protection Agency, Annapolis, Maryland.Google Scholar
  17. Bell, S. S., B. D. Robbins, andS. L. Jensen. 1999. Gap dynamics in a seagrass landscape.Ecosystems 2:493–504.CrossRefGoogle Scholar
  18. Benndorf, J. andK. Puetz. 1987. Control of eutrophication of lakes and reservoirs by means of pre-dams.Water Research 21: 829–838.CrossRefGoogle Scholar
  19. Biggs, R. B. 1970. Sources and distribution of suspended sediment in northern Chesapeake Bay.Marine Geology 9:187–201.CrossRefGoogle Scholar
  20. Blackburn, T. H., D. B. Nedwell, andW. J. Wiebf. 1994. Active mineral cycling in a Jamaican seagrass sediment.Marine Ecology Progress Series 110:233–239.CrossRefGoogle Scholar
  21. Boeger, R. T. 1992. The influence of substratum and water velocity on growth ofRanunculus aquatilis L. (Ranunculaceae).Aquatic Botany 42:351–359.CrossRefGoogle Scholar
  22. Burrell, C. andJ. R. Schubel. 1977. Seagrass ecosystem oceanography, p. 196–232.In C. P. McRoy and C. Helfferich (eds.), Seagrass Ecosystems. Marcel Dekker, Inc, New York.Google Scholar
  23. Carlson, P. R., L. A. Yarbro, andT. R. Barber. 1994. Relatonship of sediment sulfide to mortality ofThalassia testudinum in Florida Bay.Bulletin of Marine Science 54:733–746.Google Scholar
  24. Carter, V., J. W. Barko, G. L. Godshalk, andN. B. Rybicki. 1988. Effects of submersed macrophytes on water quality in the tidal Potomac River, Maryland.Journal of Freshwater Ecology 4:493–501.Google Scholar
  25. Cater, V., J. E. Paschal, andN. Bartow. 1985. Distribution and Abundance of Submerged Aquatic Vegetation in the Tidal Potomac River and Estuary, Maryland and Virginia, May 1978 to November 1981—A Water Quality Study of the Tidal Potomac River and Estuary. Water Supply Paper 223A. U.S. Geological Survey, Reston, Virginia.Google Scholar
  26. Carter, V. andN. B. Rybicki. 1990. Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary.Estuaries 13:441–452.CrossRefGoogle Scholar
  27. Carter, V., N. B. Rybicki, andR. Hammerschlag. 1991. Effects of submersed macrophytes on dissolved oxygen, pH and temperature under different conditions of wind, tide and bed structure.Journal of Freshwater Ecology 6:121–133.Google Scholar
  28. Chambers, P. A. 1987. Nearshore occurrence of submerged aquatic macrophytes in relation to wave action.Canadian Journal of Fisheries and Aquatic Science 44:1666–1669.CrossRefGoogle Scholar
  29. Chiscano, C. 2000. The effects of wave exposure on submerged aquatic vegetation. M. S. Thesis, University of Maryland, College Park, Maryland.Google Scholar
  30. Christiansen, C., H. Christoffersen, J. Dalsgaard, andP. Nornberg. 1981. Coastal and near-shore changes correlated with die-back in eelgrass (Zostera marina L).Sedimentary Geology 28:163–173.CrossRefGoogle Scholar
  31. Clarke, S. M. 1987. Seagrass-sediment dynamics in Holdfast Bay: Summary.Safish 11:4–10.Google Scholar
  32. Conover, J. T. 1964. Environmental Relationships of Benthos in Salt Ponds (Plant Relationships). University of Rhode Island, Graduate School of Oceanography, Technical Report No. 3. Narragansett, Rhode Island.Google Scholar
  33. Dan, A., A. Moriguchi, K. Mitsuhashi, andT. Terawaki. 1998. Relationship betweenZostera marina and bottom sediments, were action offshore in Naturo, Southern Japan.Fisheries Engineering 34:229–204.Google Scholar
  34. Demas, G. P., M. C. Rabenhorst, andJ. C. Stevenson. 1996. Subaqueous soils: A pedological Approach to the study of shallow water habitats.Estuaries 19:229–237.CrossRefGoogle Scholar
  35. Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. W. Bergstrom, andR. A. Batituk. 1993. Assessing water quality with submersed aquatic vegetation.BioScience 43:86–94.CrossRefGoogle Scholar
  36. Dunn, C., F. Lopez, and M. Garcia. 1996. Mean Flow and Turbulence in a Laboratory Channel with Simulated Vegetation. University of Illinois Civil Engineering Studies: Hydraulic Engineering Series 51. Urbana, Illinois.Google Scholar
  37. Dunton, K. H. 1990. Production ecology ofRuppia manitima andHalodule wrightii in two subtropical estuaries.Journal of Experimental Marine Biology and Ecology 143:147–164.CrossRefGoogle Scholar
  38. Dunton, K. H. 1994. Seasonal growth and biomass of the subtropical seagrassHalodule wrightii in relation to continuous measurements of underwater irradiance.Marine Biology 120: 479–489.CrossRefGoogle Scholar
  39. Edgar, G. J. andC. Shaw. 1995. The production and trophic ecology of shallow-water fish assemblages in southern Australia. III. General relationships between sediments, seagrasses, invertebrates and fishes,Journal of Experimental Marine Biology and Ecology 194:107–131.CrossRefGoogle Scholar
  40. Eldridge, P. M. andJ. W. Morse. 2000. A diagenetic model for sediment-seagrass interactions.Marine Chemistry 70:89–103.CrossRefGoogle Scholar
  41. Eleuterius, L. N. andG. J. Miller. 1976. Observations on seagrasses and seaweeds in Mississippi Sound since hurricane Camille.Journal of the Mississippi Academy of Science 21:58–63.Google Scholar
  42. Elwany, M. H. S., W. C. O'Reilly, R. T. Guza, andR. E. Flick. 1995. Effects of Southern California kelp beds on, waves.Journal of Waterways, Port and Coastal Ocean Engineering 121:143–150.CrossRefGoogle Scholar
  43. Erskine, J. M. andM. S. Koch. 2000. Sulfide-effects onThalassia testudinum carbon balance and adenylate energy charge.Aquatic Botany 67:275–285.CrossRefGoogle Scholar
  44. Fletcher, S. W. andW. W. Fletcher. 1995. Factors affecting changes in seagrass distribution and diversity patterns in the Indian River Laggon complex between 1940 and 1992.Bulletin of Marine Science 57:49–58.Google Scholar
  45. Fonseca, M. S. 1996. The role of seagrasses in nearshore sediment processes: A review, p. 261–286.In K. F. Nordstrom and C. J. Roman (eds.), Estuarine Shores: Evolution, Environments and Human Alterations, John Wiley and Sons, New York.Google Scholar
  46. Fonseca, M. S. andS. S. Bell. 1998. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, U.S.A..Marine Ecology Progress Series 171:109–121.CrossRefGoogle Scholar
  47. Fonseca, M. S. andJ. A. Cahalan. 1992. A preliminary evaluation of wave attenuation by four species of seagrass.Estuarine Coastal and Shelf Science 35:565–576.CrossRefGoogle Scholar
  48. Fonseca, M. S. andJ. S. Fisher. 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration.Marine Ecology Progress Series 29:15–22.CrossRefGoogle Scholar
  49. Fonseca, M. S., J. S. Fisher, J. C. Zieman, andG. W. Thayer. 1982. Influence of the seagrassZostera marina on current flow.Estuarine Coastal and Shelf Science 15:351–364.CrossRefGoogle Scholar
  50. Fonseca, M. S. andW. J. Kenworthy. 1987. Effects of current on photosythesis and distribution of seagrasses.Aquatic Botany 27:59–78.CrossRefGoogle Scholar
  51. Gallegos, M. E., N. Marba, M. Merino, andC. M. Duarte. 1993. Biomass and dynamics ofThalassia testudinum in the Mexican Caribbean: Eclucidating rhizome growth.Marine Ecology Progress Series 95:185–192.CrossRefGoogle Scholar
  52. Gambi, M. C., A. R. M. Nowell, andP. A. Jumars. 1990. Flume observations on flow dynamics inZostera marina (eelgrass) beds.Marine Ecology Progress Series 61:159–169.CrossRefGoogle Scholar
  53. Gambrell, R. P. andW. H. Patrick, Jr. 1978. Chemical and microbiological properties of anaerobic soils and sediments, p. 375–423.In D. D. Hook and R. M. M. Crawford (eds.), Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan.Google Scholar
  54. Giesen, W. B. J. T., M. M. van Katwijk, andC. den Hartog. 1990. Eelgrass conditions and turbilidy in the Dutch Wadden Sea.Aquatic Botany 37:71–95.CrossRefGoogle Scholar
  55. Goodman, J. L., K. A. Moore, andW. C. Dennison. 1995. Photosynthetic responses of eelgrass (Zostera marina) to light and sediment sulfide in a shallow barrier lagoon.Aquatic Botany 50:37–48.CrossRefGoogle Scholar
  56. Grady, J. R. 1981. Properties of seagrass and sand flat sediments from the intertidal zone of St. Andrews Bay, Florida.Estuaries 4:335–344.CrossRefGoogle Scholar
  57. Grizzle, R. E., F. T. Short, C. R. Newell, H. Hoven, andL. Kindblom. 1996. Hydrodynamically induced waving of sea grasses: ‘Monami’ and its possible effects on larval and mussel settlement.Journal of Experimental Marine Biology and Ecology 206:165–177.CrossRefGoogle Scholar
  58. Hall, M. O., M. J. Durako, J. W. Fourqurean, andJ. C. Zieman. 1999. Decadal changes in seagrass distribution and abundance in Florida Bay.Estuaries 22:445–459.CrossRefGoogle Scholar
  59. Hannan, H. H. 1967. Macrophyte standing crop and metabolism in a constant temperature river. Ph.D. Dissertation. Oklahoma State University, Stillwater, Oklahoma.Google Scholar
  60. Haslam, S. M.. 1978. River Plants: The Macrophytic Vegetation of Watercourses. Cambridge University Press, New York.Google Scholar
  61. Hine, A. C., M. W. Evans, R. A. Davis, andD. Belknap. 1987. Depositional response to seagrass mortality along a low-energy, barrier island coast: West-Central Florida.Journal of Sedimentary Petrology 57:431–439.Google Scholar
  62. Holmer, M. andS. L. Nielsen. 1997. Sediment sulfur dynamics related to biomass-density patterns inZostera marina (eelgrass) beds.Marine Ecology Progress Series 146:163–171.CrossRefGoogle Scholar
  63. Homziak, J., M. S. Fonseca, andW. J. Kenworthy. 1982. Macrobenthic community structure in a transplanted eelgrass (Zostera marina) meadow.Marine Ecology Progress Series 9:211–221.CrossRefGoogle Scholar
  64. Horner, R. R., E. B. Welch, M. R. Seeley, andJ. M. Jacoby. 1990. Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration.Freshwater Biology 24:215–232.CrossRefGoogle Scholar
  65. Hoskin, C. H. 1983. Sediment in seagrasses near Link Port, Indian River, Florida.Florida Scientist 46:153–161.Google Scholar
  66. Hosper, H. 1994. An ecosystem-based approach for the restoration of shallow lakes in the Netherlands.Lake and Reservoir Management 9:82.Google Scholar
  67. Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments.Biogeochemistry 1:5–27.CrossRefGoogle Scholar
  68. Huettel, M. andG. Gust. 1992. Impact of bioroughness on interfacial solute exchange in permeble sediments.Marine Ecology Progress Series 89:253–267.CrossRefGoogle Scholar
  69. Huettel, M. andA. Rusch. 2000. Transport of phytoplankton in permeable sediment.Limnology and Oceanography 45:534–549.Google Scholar
  70. Hutchinson, G. E. 1975. A Treatise of Limnology, Limnological Botany. John Wiley and Sons, New York.Google Scholar
  71. Idestam-Almquist, J. andL. Kautsky. 1995. Plastic responses in morphology ofPolamogeton pectinatus to sediment and above-sediment conditions at two sites in the northern Baltic proper.Aquatic Botany 52:205–216.CrossRefGoogle Scholar
  72. Isaksen, M. F. andK. Finster. 1996. Sulphate in the root zone of a seagrass bed (Zostera noltii) in a tidal area, the basin of Arcachon, France.Marine Ecology Progress Series 137:187–194.CrossRefGoogle Scholar
  73. Joanen, T. andL. L. Glasgow. 1965. Factors influencing the establishment of widgeon grass stands in Louisiana.Southeastern Association Game Fish Commissioners Conference 19:78–92.Google Scholar
  74. Jones, C. G., J. H. Lawton, andM. Shachak. 1994. Organisms as ecosystem engineers.Oikos 69:373–386.CrossRefGoogle Scholar
  75. Jones, J. I., J. W. Eaton, andK. Hardwick. 2000. The influence of periphyton on boundary layer conditions: pH microelectrode investigation.Aquatic Botany 67:191–206.CrossRefGoogle Scholar
  76. Kaldy, J. E. andK. H. Dunton. 2000. Above- and belowground production, biomass and reproductive ecology in a subtropical coastal lagoon.Marine Ecology Progress Series 193:271–283.CrossRefGoogle Scholar
  77. Keddy, P. A. 1982. Quantifying within-lake gradients of wave energy: Interrelationships of wave-energy, substrate particle size and shoreline plants in Axe Lake, Ontario.Aquatic Botany 14: 41–58.CrossRefGoogle Scholar
  78. Kemp, W. M., W. R. Boynton, R. R. Twilley, J. C. Stevenson, andL. G. Ward. 1984. Influences of submersed vascular plants on ecological processes in the upper Chesapeake Bay, p. 367–394.In V. S. Kennedy (ed.) The Estuary as a Filter. Academy Press, New York.Google Scholar
  79. Kendrick, G. A. andJ. S. Burt. 1997. Seasonal changes in epiphytic macroalgae assemblages between offshore exposed and inshore protectedPosidonia sinuosa Cambridge et Kuo seagrass meadow. Western Australia.Botanica Marina 40:77–85.Google Scholar
  80. Kenworthy, W. J., J. C. Zieman andG. W. Thayer. 1982. Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA).Oecologia 54:152–158.CrossRefGoogle Scholar
  81. Kobayashi, N., A. W. Raichle, andT. Asano. 1993. Wave attenuation by vegetation.Journal of Waterway, Port, Coastal and Ocean Engineering 119:30–48.CrossRefGoogle Scholar
  82. Koch, E. W. 1993. The effects of water flow on photosynthetic processes of the algaUlva lactuca L.Hydrobiologia 260/261: 457–462.CrossRefGoogle Scholar
  83. Koch, E. W. 1994. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrassesThalassia testudinum andCymodocea nodosa.Marine Biology 118:767–776.CrossRefGoogle Scholar
  84. Koch, E. W. 1996. Hydrodynamics of a shallowThalassia testudinum bed in Florida, USA, p. 105–109.In J. Kuo, R. C. Phillips, D. I. Walker, and H. Kirkman (eds.), Seagrass Biology: Proceedings of an International Workshop. Faculty of Sciences, The University of Western Australia, Nedlands, Western Australia.Google Scholar
  85. Koch, E. W. 1999. Preliminary evidence on the interdependent effect of currents and porewater geochemistry onThalassia testudinum seedlings.Aquatic Botany 63:95–102.CrossRefGoogle Scholar
  86. Koch, E. W. andS. Beer. 1996. Tides, light and the distribution ofZostera marina in Long Island Sound, USA.Aquatic Botany 53:97–107.CrossRefGoogle Scholar
  87. Koch, E. W. andG. Gust. 1999. Water flow in tide and wave dominated beds of the seagrassThalassia testudinum.Marine Ecology Progress Series 184:63–72.CrossRefGoogle Scholar
  88. Kuhn, W. A. 1992. Interacting effects of light and sediment sulfide on eelgrass (Zostera marina) growth. M.S. Thesis, University of Maryland. College Park, Maryland.Google Scholar
  89. Lee, K.-S. andK. H. Dunton. 1996. Production and carbon reserve dynamics of the seagrassThalassia testudinum in Corpus Christi Bay, Texas, USA.Marine Ecology Progress Series 143: 201–210.CrossRefGoogle Scholar
  90. Lee, K.-S. andK. H. Dunton. 2000. Diurnal changes in porewater sulfide concentration in the seagrassThalassi testudinum beds: The effects of seagrasses on sulfide dynamics.Journal of Experimental Marine Biology and Ecology 225:201–214.CrossRefGoogle Scholar
  91. Livingston, R. J., S. E. McGlynn andX. Niu. 1998. Factors controlling seagrass growth in a gulf coastal system: Water and sediment quality and light.Aquatic Botany 60:135–159.CrossRefGoogle Scholar
  92. Madsen, T. V. 1987. Sources of inorganic carbon acquired through CAM inLittorella uniflora.Journal of Experimental Botany 38:367–377.CrossRefGoogle Scholar
  93. Madsen, T. V. andK. Sand-Jensen. 1991. Photosynthetic carbon assimilation in aquatic macrophytes.Aquatic Botany 41:5–40.CrossRefGoogle Scholar
  94. Madsen, T. V. andM. Sondergaard. 1983. The effects of current velocity on photosynthesis ofCallitriche stagnalis.Aquatic Botany 15:187–193.CrossRefGoogle Scholar
  95. Madsen, T. V. andE. Warnke. 1983. Velocities of currents around and within submerged aquatic vegetation.Archiv fur Hydrobiologie 97:389–394.Google Scholar
  96. Marba, N. andC. M. Duarte. 1994. Growth response of the seagrassCymodocea nodosa to experimental burial and erosion.Marine Ecology Progress Series 107:307–311.CrossRefGoogle Scholar
  97. Marshall, N. andK. Kulas. 1970. Preliminary observations on the properties of bottom sediments with and without eelgrass,Zostera marina, cover.Proceedings of the National Shellfish Association 60:107–111.Google Scholar
  98. Martin, A. C. and F. M. Uhler. 1939. Food of Game Ducks in the United States and Canada. U.S. Department of Agriculture Technical Bulletin 634. Washington, D.C.Google Scholar
  99. Mateo, M. A., J. Romero, M. Perez, M. M. Littler, andD. S. Littler. 1997. Dynamics of millenary organic deposits resulting from growth of the Mediterranean seagrassPosidonia oceanica.Estuarine, Coastal and Shelf Science 44:103–110.CrossRefGoogle Scholar
  100. Merrell, K. C. 1996. The effects of flow and mixing onVallisneria and its associated community in experimental mesocosms. M.S. Thesis, University of Maryland, College Park, Maryland.Google Scholar
  101. Moore, K.A., J. L. Goodman, J. C. Stevenson, L. Murray, and K. Sundberg. 1994. Chesapeake Bay Nutrients, Light and SAV in Field and Mesocosm Studies. Final Report to Environmental Protection Agency Chesapeake Bay Program, Annapolis, Maryland.Google Scholar
  102. Moore, K. A., R. J. Orth, andJ. F. Nowak. 1993. Environmental regulation of seed germination inZostera marina (eelgrass) in Chesapeake Bay: Effects of light, oxygen and sediment burial.Aquatic Botany 45:79–91.CrossRefGoogle Scholar
  103. Mork, M. 1996. The effect of kelp in wave damping.Sarsia 80: 323–327.Google Scholar
  104. Murphey, P. L. andM. S. Fonseca. 1995. Role of high and low energy seagrass beds nursery areas forPenaeus duorarum in North Carolina.Marine Ecology Progress Series 121:91–98.CrossRefGoogle Scholar
  105. Nepf, H. M. 1999. Drag, turbulence and diffusion in flow through emergent vegetation.Water Resources Research 35:479–489.CrossRefGoogle Scholar
  106. Nepf, H. M., J. A. Sullivan, andR. A. Zavistoski. 1997. A model for diffusion within emergent vegetation.Limnology and Oceanography 42:1735–1745.Google Scholar
  107. Newell, S. Y., J. W. Fell, andC. Miller. 1986. Deposit and decomposition of turtlegrass leaves.International Revue der Gesamten Hydrobiologie 71:363–369.CrossRefGoogle Scholar
  108. Nielsen, S. L., I. Thingstruo, andC. Wigand. 1999. Apparent lack of vesicular-arbuscular mycorrhiza (VAM) in the seagrassesZostera marina andThalassia testudinum.Aquatic Botany 63: 261–266.CrossRefGoogle Scholar
  109. Nienhus, P. H. 1983. Temporal and spatial patterns of eelgrass (Zostera marina L.) in a former estuary in the Netherlands dominated by human activity.Marine Technology Society Journal 17:69–77.Google Scholar
  110. Nowell, A. R. M. andP. A. Jumars. 1984. Flow environments of aquatic benthos.Annual Review of Ecology and Systematics 15: 302–328.CrossRefGoogle Scholar
  111. Onuf, C. 1996. Biomass patterns in seagrass meadows of the Laguna Madre, Texas.Bulletin of Marine Science 58:404–420.Google Scholar
  112. Orth, R. 1976. The demise and recovery of eelgrass,Zostera marine, in the Chesapeake Bay, Virginia.Aquatic Botany 2:141–159.CrossRefGoogle Scholar
  113. Orth, R. J. 1977. The importance of sediment stability in seagrass communities, p. 281–300.In B. C. Coull (ed.), Ecology of Marine Benthos, University of South Carolina Press, Columbia, South Carolina.Google Scholar
  114. Patten, Jr.,B. C. 1956. Notes on the biology ofMyriophyllum spicatum L. in New Jersey lake.Bulletin of the Torrey Botanical Club 83:5–18.CrossRefGoogle Scholar
  115. Pearsall, W. H. 1920. The aquatic vegetation of the English lakes.Journal of Ecology 8:163–199.CrossRefGoogle Scholar
  116. Phillips, R. C. 1974. Temperate grass flats, Volume 2, p. 244–299.In H. T. Odum, B. J. Copeland, and E. A. McMahan (eds.), Coastal Ecological Systems of the United States, Conservation Foundation, Washington, D.C.Google Scholar
  117. Pollard, P. C. andD. J. Moriarty. 1991. Organic carbon deposition, primary and bacteria productivity, in tropical seagrass beds of the Gulf of Carpenteria, Australia.Marine Ecology Progress Series 69:149–159.CrossRefGoogle Scholar
  118. Posey, M. H., C. Wigand, andJ. C. Stevenson. 1993. Effects of an introduced aquatic plant,Hydrilla verticillata, on benthic communities in the upper Chesapeake Bay.Estuarine, Coastal and Shelf Science 37:539–555.CrossRefGoogle Scholar
  119. Powell, G. V. N. andF. C. Schaffner. 1991. Water trapping by seagrasses occupying bank habitats in Florida Bay.Estuarine, Coastal and Shelf Science 32:43–60.CrossRefGoogle Scholar
  120. Pregnal, A. M., R. D. Smith, T. A. Kursar, andR. S. Alberte. 1984. Metabolic adaptation ofZostera marina (eelgrass) to diurnal periods of root anoxia.Marine Biology 83:141–147.CrossRefGoogle Scholar
  121. Prins, H. B. A., J. F. H. Snel, P.E. Zanstra, andR. J. Helder. 1982. The mechanism of bicarbonate assimilation by the polar leaves ofPotamogeton andElodea, CO2 concentrations at the leaf surface.Plant, Cell and Environment 5:207–214.Google Scholar
  122. Pulich, W. M. 1983. Growth response ofHalophila engelmanii to sulfide, copper and organic nitrogen in marine sediments.Plant Physiology 71:975–978.CrossRefGoogle Scholar
  123. Pulich, W. M. 1989. Effects of rhizosphere macronutrients and sulfide levels on the growth physiology ofHalodule wrightii andRuppia maritima.Journal of Experimental Marine Biology and Ecology 127:69–80.CrossRefGoogle Scholar
  124. Rattray, M. R., C. Howard-Williams, andJ.M. A. Brown. 1991. Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes.Aquatic Botany 40:225–237.CrossRefGoogle Scholar
  125. Rawls, C. K. 1975. Mechanical control of eurasian molfoil in Maryland with and without 2,3-D application.Chesapeake Science 16:266–281.CrossRefGoogle Scholar
  126. Robbins, B. D. andS. S. Bell. 2000. Dynamics of subtidal seagrass landscape: Seasonal and annual changes in relation to water depth.Ecology 81:1193–1205.CrossRefGoogle Scholar
  127. Roblee, M. B., T. R. Barber, P. R. Carlson, M. J. Durako, J. W. Fourqurean, L. K. Muehlstein, D. Porter, L. A. Yarbro, R. T. Zieman, andJ. C. Zieman. 1991. Mass mortality of the tropical seagrassThalassia testudinum in Florida Bay (USA).Marine Ecology Progress Series 71:297–299.CrossRefGoogle Scholar
  128. Rodriguez, R. W., R. M. T. Webb, andD. M. Bish. 1994. Another look at the impact of hurricane Hugo on the shelf and coastal resources of Puerto Rico, USA.Journal of Coastal Research 10: 278–296.Google Scholar
  129. Rybicki, N. B. andV. Carter. 1986. Effects of sediment depth and sediment type on the survival ofVallisneria americana grown from tubers.Aquatic Botany 24:233–240.CrossRefGoogle Scholar
  130. Rybicki, N. B., H. L. Jenter, V. Carter, R. A. Baltzer, andM. Turtora. 1997. Observations of tidal flux between a submeersed aquatic plant stand and the adjacent channel in the Potomac River near Washington, DC.Limnology and Oceanography 42:307–317.CrossRefGoogle Scholar
  131. Sand-Jensen, K. andJ. R. Mebus. 1996. Fine-scale patterns of water velocity within macrophyte patches in streams.Oikos 76: 169–180.CrossRefGoogle Scholar
  132. Sanford, L. 1997. Turbulent mixing in experimental ecosystem studies.Marine Ecology Progress Series 161:265–293.CrossRefGoogle Scholar
  133. Scoffin, T. P. 1970. The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas.Journal of Sedimentary Petrology 40:249–273.Google Scholar
  134. Sculthorpe, C. D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold Ltd., London.Google Scholar
  135. Seymour, R. J. 1996. Effects of Southern California kelp beds on waves.Journal of Waterway, Port, Coastal and Ocean Engineering 122:207–208.CrossRefGoogle Scholar
  136. Short, F. T. 1983. The seagrass,Zostera marina L.: Plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska.Aquatic Botany 16:149–161.CrossRefGoogle Scholar
  137. Short, F. T. 1987. Effects of sediment nutrients on seagrasses: Literature review and mesocosm experiment.Aquatic Botany 27:41–57.CrossRefGoogle Scholar
  138. Short, F. T., D. M. Burdick, J. Wolf, andG. E. Jones. 1993. Eelgrass in Estuarine Research Reserves Along the East Coast, USA, Part I: Declines from Pollution and Disease; Part II: Management of Eelgrass Meadows. National Oceanic and Atmospheric Administration Coastal Ocean Program Publication. Durham, New Hamsphire.Google Scholar
  139. Short, F. T. andH. A. Neckles. 1999. The effects of global climate change on seagrasses.Aquatic Botany 63:169–196.CrossRefGoogle Scholar
  140. Short, F. T. andS. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses.Environmental Conservation 23:17–27.CrossRefGoogle Scholar
  141. Smith, R. D., A. M. Pregnall, andR. S. Alberte. 1988. Effects of anaerobiosis on root metabolism ofZostera marina (eelgrass); Implications for survival in reducing sediments.Marine Biology 98:13–141.CrossRefGoogle Scholar
  142. Sondergaard, M. andK. Sand-Jensen. 1979. Carbon uptake by leaves and roots ofLittorella uniflora.Aquatic Botany 6:1–12.CrossRefGoogle Scholar
  143. Springer, P. F. 1959. Summary of Integragency Meeting on Eurasian Watermilfoil. U.S. Fish and Wildlife Service, Patuxent Wildlife Station, Lourel, Maryland.Google Scholar
  144. Stevenson, J. C. andN. M. Confer. 1978. Summary of Available Information on Chesapeake Bay Submerged Vegetation. Fish Wildlife Service, OBS 78/66, National Space and Technology Lab Station, Mississippi.Google Scholar
  145. Stewart, R. M., D. G. McFarland, D. L. Ward, S. K. Martin. and J. W. Barko. 1997. Flume Study Investigation of the Direct Impacts of Navigation-Generated Waves on Submersed Aquatic Macrophytes in the Upper Mississippi River. U.S. Army Corps of Engineers, ENV Report 1. St. Paul, Minnesota.Google Scholar
  146. Strand, J. A. andS. E. B. Weisner. 1996. Wave exposure related growth of epiphyton: Implications for the distribution of submerged macrophytes in eutrophic lakes.Hydrobiologia 325: 113–119.CrossRefGoogle Scholar
  147. Thomas, L. P., D. R. Moore, andR. C. Work. 1961. Effects of hurricane Donna on the Turtlegrass beds of Biscayne Bay, Florida.Bulletin of Marine Science of the Gulf and Caribbean 11: 191–197.Google Scholar
  148. Touchette, B. W. andJ. M. Burkholder. 2000a. Review of nitrogen and phosphorus metabolism in seagrasses.Journal of Experimental Marine Biology and Ecology 250:133–167.CrossRefGoogle Scholar
  149. Touchette, B. W. andJ. M. Burkholder. 2000b. Overview of the physiological ecology of carbon metabolism in seagrasses.Journal of Experimental Marine Biology and Ecology 250:169–205.CrossRefGoogle Scholar
  150. Van Katwijk, M. M. andK. C. R. Hermus. 2000. Effects of water dynamics onZostera marina: Transplantation experiments in the intertidal Dutch Wadden Sea.Marine Ecology Progress Series 208:107–118.CrossRefGoogle Scholar
  151. van Katwijk, M. M., L. H. T. Vergeer, G. H. W. Schmitz, andJ. G. M. Roelofs. 1997. Ammonium toxicity in eelgrassZostera marina.Marine Ecology Progress Series 157:159–173.CrossRefGoogle Scholar
  152. van Keulen, M. 1997. Water flow in seagrass ecosystems. Ph.D. Dissertation, Murdoch University, Western Australia.Google Scholar
  153. van Wijck, C., C. J. de Groot, andP. Grillas. 1992. The effect of anaerobic sediment on the growth ofPotamogeton pectinatus L: The role of organic matter, sulfide and ferrous iron.Aquatic Botany 44:31–49.CrossRefGoogle Scholar
  154. Verduin, J. J. andJ. O. Backhaus. 2000. Dynamics of plant-flow interactions for the seagrassAmphibolis antarctica: Field observations and model simulations.Estuarine, Coastal and Shelf Science 50:185–204.CrossRefGoogle Scholar
  155. Wanless, H. R. 1981. Fining-upwards sedimentary sequences generated in seagrass beds.Journal of Sedimentary Petrology 51: 445–454.Google Scholar
  156. Ward, L. G., W. M. Kemp, andW. R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment.Marine Geology 59:85–103.CrossRefGoogle Scholar
  157. Weisner, S. E. B., J. A. Strand, andH. Sandsten. 1997. Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes.Oecologia 109:592–599.CrossRefGoogle Scholar
  158. Werner, I. andG. Wise. 1982. Biomass production of submersed macrophytes in a selected stretch of the River Zschopau (South GDR) with special regard to orthophosphate incorporation.International Revue der Gesamten Hydrobiologie 67: 45–62.Google Scholar
  159. Westlake, D. F. 1967. Some effects of low-velocity currents on the metabolism of aquatic macrophytes.Journal of Experimental Botany 18:187–205.CrossRefGoogle Scholar
  160. Wigand, C. andJ. C. Stevenson. 1994. The presence and possible ecological significance of microrrhizae of the submersed macrophyteVallisneria americana.Estuaries 17:206–215.CrossRefGoogle Scholar
  161. Wigand, C., J. C. Stevenson, andJ. C. Cornwell. 1997. Effects of different submersed macrophytes on sediment biogeochemistry.Aquatic Botany 56:233–244.CrossRefGoogle Scholar
  162. Wood, E. F. J., W. E. Odum, andJ. Zieman. 1969. Influences of seagrasses on the productivity of coastal lagoons, p. 495–502.In A. A. Castanares and F. B. Pflueger (eds.), Coastal Lagoons, Universidad Autonoma de Mexico, Ciudad Universitaria, Mexico.Google Scholar
  163. Worcester, S. E. 1995. Effects of eelgrass beds on advection and turbulent mixing in low current and low shoot density environments.Marine Ecology Progress Series 126:223–232.CrossRefGoogle Scholar
  164. Yoshida, T. 1975. Microbial metabolism of flooded soils.Soil Biochemistry 3:83–122.Google Scholar
  165. Young, I. R. andL. A. Verhagen 1996. The growth of fetch limited waves in water of finite depth. Part1. Total energy and peak frequency.Coastal Engineering 29:47–78.CrossRefGoogle Scholar

Sources of Unpublished Materials

  1. Ailstock, S. personal communication. Department of Biology, Anne Arundel Community College, 101 College Parkway, Arnold, Maryland 21012.Google Scholar
  2. Koehl, M. personal communication. Department of Integrative Biology, University of California at Berkeley 3060 Valley Life Sciences Building, Berkeley, California 94720-3140.Google Scholar
  3. Seeliger, U. unpublished data. Departmento de Oceanografia, Universidade do Rio Grande, Caixa Postal 474, 96201-900 Rio Grande, RS, Brazil.Google Scholar

Copyright information

© Estuarine Research Federation 2001

Authors and Affiliations

  • Evamaria W. Koch
    • 1
  1. 1.Horn Point LabUniversity of Maryland Center for Environmental ScienceCambridge

Personalised recommendations