Estuaries

, Volume 15, Issue 3, pp 384–391 | Cite as

Effects of low dissolved oxygen events on the macrobenthos of the lower Chesapeake Bay

  • Daniel M. Dauer
  • Anthony J. Rodi
  • J. Ananda Ranasinghe
Article

Abstract

The effects of low dissolved oxygen or hypoxia (<2 mg l−1) on macrobenthic infaunal community structure and composition in the lower Chesapeake Bay and its major tributaries, the Rappahannock, York, and James rivers are reported. Macrobenthic communities at hypoxia-affected stations were characterized by lower species diversity, lower biomass, a lower proportion of deep-dwelling biomass (deeper than 5 cm in the sediment), and changes in community composition. Higher dominance in density and biomass of opportunistic species (e.g., euryhaline annelids) and lower dominance of equilibrium species (e.g., long-lived bivalves and maldanid polychaetes) were observed at hypoxia-affected stations. Hypoxia-affected macrobenthic communities were found in the polyhaline deep western channel of the bay mainstem north of the Rappahannock River and in the mesohaline region of the lower Rappahannock River. No hypoxic effects on the infaunal macrobenthos were found in the York River, James River, or other deep-water channels of the lower Chesapeake Bay.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aller, R. C. 1978. The effects of animal-sediment interactions on geochemical processes near the sediment-water interface. p. 157–172. In M. L. Wiley (ed.), Estuarine Interactions. Academic Press, New York.Google Scholar
  2. Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water, p. 53–102. In P. L. McCall and M. J. S. Tevesz (eds.), Animal-Sediment Relations. Plenum Press, New York.Google Scholar
  3. Boesch, D. F. 1977a. Application of numerical classification in ecological investigations of water pollution. United States Environment Protection Agency, Corvallis, Oregon. EPA-600/3-77-033, 115 p.Google Scholar
  4. Boesch, D. F. 1977b. A new look at the zonation of benthos along the estuarine gradient, p. 245–266. In B. C. Coull (ed.), Ecology of Marine Benthos. University of South Carolina Press, Columbia, South Carolina.Google Scholar
  5. Clifford, H. T. and W. Stephenson. 1975. An Introduction to Numerical Classification. Academic Press, New York. 229 p.Google Scholar
  6. Dauer, D. M., R. M. Ewing, J. A. Ranasinghe, and A. J. Rodi, Jr. 1989. Macrobenthic communities of the lower Chesapeake Bay. Chesapeake Bay Program. Final report to the Virginia Water Control Board. Richmond, Virginia. 296 p.Google Scholar
  7. Folk, R. L. 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, Texas. 182 p.Google Scholar
  8. Gaston, G. R. 1985. Effects of hypoxia on macrobenthos of the inner shelf off Cameron, Louisiana. Estuarine, Coastal and Shelf Science 20:603–613.CrossRefGoogle Scholar
  9. Gray, J. S. 1979. Pollution-induced changes in populations. Philosophical Transactions of the Royal Society of London, Series B 286:545–561.CrossRefGoogle Scholar
  10. Haas, L. W. 1977. The effect of spring-neap tidal cycle on the vertical salinity structure of the James, York, and Rappahannock rivers, Virginia, USA. Estuarine, Coastal and Shelf Science 5:485–496.Google Scholar
  11. Holland, A. F., N. K. Mountford, and J. A. Mihursky. 1977. Temporal variation in upper bay mesohaline benthic communities. I. The 9-m mud habitat. Chesapeake Science 18:370–378.CrossRefGoogle Scholar
  12. Holland, A. F., A. T. Shaughnessy, and H. Hiegel. 1987. Long-term variation in mesohaline Chesapeake Bay macrobenthos: Spatial and temporal patterns. Estuaries 10:227–245.CrossRefGoogle Scholar
  13. Kuo, A. Y. and B. J. Neilson. 1987. Hypoxia and salinity in Virginia estuaries. Estuaries 10:277–283.CrossRefGoogle Scholar
  14. Lee, H., II, and R. C. Swartz. 1980. Biological processes affecting the distribution of pollutants in marine sediments. Part II. Biodeposition and bioturbation, p. 555–606. In R. A. Baker (ed.), Contaminants and Sediments, Volume 2, Analysis, Chemistry, Biology. Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  15. Matisoff, G. 1982. Mathmatical models of bioturbation, p. 289–330. In P. L. McCall and M. J. S. Tevesz (eds.), Animal-Sediment Relations. Plenum Press, New York.Google Scholar
  16. McCall, P. L. 1977. Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. Journal of Marine Research 35:221–266.Google Scholar
  17. Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler, and W. R. Boynton. 1984. Chesapeake Bay anoxia: Origin, development, and significance. Science 223:22–27.CrossRefGoogle Scholar
  18. Pearson, T. H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Annual Review of Oceanography and Marine Biology 16:229–311.Google Scholar
  19. Pihl, L., S. P. Baden, and R. J. Diaz. 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108:349–360.CrossRefGoogle Scholar
  20. Rosenberg, R. 1977. Benthic macrofaunal dynamics, production and dispersion in an oxygen-deficient estuary of west Sweden. Journal of Experimental Marine Biology and Ecology 26: 107–133.CrossRefGoogle Scholar
  21. Rhoads, D. C. and L. F. Boyer. 1982. The effects of marine benthos on physical properties of sediments: A successional perspective, p. 3–52. In P. L. McCall and M. J. S. Tevesz (eds.), Animal-Sediment Relations. Plenum Press, New York.Google Scholar
  22. Rhoads, D. C., P. L. McCall, and J. Y. Yingst. 1978. Disturbance and production on the estuarine seafloor. American Scientists 66:577–586.Google Scholar
  23. Santos, S. L. and J. L. Simon. 1980. Response of soft-bottom benthos to annual catastrophic disturbance in a South Flordia estuary. Marine Ecology Progress Series 3:347–355.CrossRefGoogle Scholar
  24. Tenore, K. R. 1972. Macrobenthos of the Pamlico River estuary, North Carolina. Ecological Monographs 42:51–69.CrossRefGoogle Scholar
  25. Taft, J. L., W. R. Taylor, E. O. Hartwig, and R. Loftus. 1980. Seasonal oxygen depletion in Chesapeake Bay. Estuaries 3:242–247.CrossRefGoogle Scholar
  26. Tuttle, J. H., R. B. Jonas, and T. C. Malone. 1987. Origin, development and significance of Chesapeake Bay anoxia, p. 442–472. In S. K. Majumdar, L. W. Hall, jr., and H. M. Austin (eds.), Contaminant Problems and Management of Living Chesapeake Bay Resources. The Pennsylvania Academy of Science, Philadelphia, Pennsylvania.Google Scholar
  27. Virnstein, R. W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58: 1199–1217.CrossRefGoogle Scholar
  28. de Vlas, J. 1979. Annual food intake by plaice and flounder in a tidal flat area in the Dutch Waden Sea, with special reference to consumption of regenerating parts of macrobenthic prey. Netherlands Journal of Sea Research 13:117–153.CrossRefGoogle Scholar
  29. de Vlas, J. 1981. On cropping and being cropped: The regeneration of body parts by benthic organisms, p. 173–177. In N. V. Jones and W. J. Wolff (eds.), Feeding and Survival Strategies of Estuarine Organisms. Plenum Press, New York.Google Scholar
  30. Warwick, R. M. 1986. A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology 92:557–562.CrossRefGoogle Scholar
  31. Woodin, S. A. 1982. Browsing: Important in marine sedimentary environments? Spionid polychaete examples. Journal of Experimental Marine Biology and Ecology 60:35–45.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1992

Authors and Affiliations

  • Daniel M. Dauer
    • 1
  • Anthony J. Rodi
    • 1
  • J. Ananda Ranasinghe
    • 2
  1. 1.Department of Biological SciencesOld Dominion UniversityNorfolk
  2. 2.ESM OperationsVersar, Inc.Columbia

Personalised recommendations