Estuaries

, Volume 17, Issue 4, pp 754–765 | Cite as

Records of nutrient-enhanced coastal ocean productivity in sediments from the Louisiana continental shelf

  • Brian J. Eadie
  • Brent A. McKee
  • Margaret B. Lansing
  • John A. Robbins
  • Simonne Metz
  • John H. Trefry
Article

Abstract

Shelf sediments from near the mouth of the Mississippi River were collected and analyzed to examine whether records of the consequences of anthropogenic nutrient loading are preserved. Cores representing approximately 100 yr of accumulation have increasing concentrations of organic matter over this period, indicating increased accumulation of organic carbon, rapid early diagenesis, or a combination of these processes. Stable carbon isotopes and organic tracers show that virtually all of this increase is of marine origin. Evidence from two cores near the river mouth, one within the region of chronic seasonal hypoxia and one nearby but outside the hypoxic region, indicate that changes consistent with increased productivity began by approximately the mid-1950s when the inorganic carbon in benthic forams rapidly became isotopically lighter at both stations. Beginning in the mid-1960s, the accumulation of organic matter, organic δ13C, and δ15N all show large changes in a direction consistent with increased productivity. This last period coincides with a doubling of the load of nutrients from the Mississippi River, which levelled off in the mid-1980s. These data support the hypothesis that anthropogenic nutrient loading has had a significant impact on the Louisiana shelf.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Benner, R., G. Chin-Leo, W. Gardner, B. J. Eadie, andJ. Cotner. 1992. The fates and effects of riverine and shelf-derived DOM on the plume/Gulf shelf process, p. 84–95.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  2. Benner, R., A. E. Maccubbin, andR. E. Hodson. 1984. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora.Applied and Environmental Microbiology 47:998–1004.Google Scholar
  3. Coakley J. P., J. H. Carey, andB. J. Eadie. 1992. Specific or-ganic components as tracers of contaminated fine sediment dispersal in Lake Ontario near Toronto.Hydrobiologia 235/236. 85–96.CrossRefGoogle Scholar
  4. DeNiro, M. J. andS. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals.Geochinica et Cosmochimica Acta 45:341–351.CrossRefGoogle Scholar
  5. Dinnell, S. P. and A. Bratkovich. In Press. The relationship of nitrate flux to water discharge and nitrate concentration in the Mississippi River:Journal of Marine Systems.Google Scholar
  6. Eadie, B. J. andL. M. Jeffrey. 1973. 13C analyses of oceanic particulate organic matter.Marine Chemistry 1:199–209.CrossRefGoogle Scholar
  7. Eadie, B. J., J. A. Robbins, P. Blackwelder, S. Metz, J. H. Trefry, B. McKee, andT. A. Nelsen. 1992. A retrospective analysis of nutrient enhanced coastal ocean productivity in sediments from the Louisiana continental shelf, p. 7–15.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University. Galveston, Texas.Google Scholar
  8. Eadie, B. J., L. M. Jeffrey, andW. M. Sackett. 1978. Some observations on the stable carbon isotope composition of dissolved and particulate organic carbon in the marine environment.Geochimica et Cosmochimica Acta 42:1265–1269.CrossRefGoogle Scholar
  9. Eganhouse, R. P. andI. R. Kaplan. 1988. Depositional history of Recent sediments from San Pedro Shelf, California: Reconstruction using elemental abundance, isotopic composition, and molecular markers.Marine Chemistry 24:163–191.CrossRefGoogle Scholar
  10. Entzeroth, L. C. 1982. Particulate matter and organic sedimentation on the continental shelf and slope of the northwest Gulf of Mexico. Ph.D. Dissertation, University of Texas, Austin, Texas.Google Scholar
  11. Farrell, D. 1974. Benthic ecology of Timbalier Bay, Louisiana, and adjacent offshore areas in relation to oil production. Ph.D. Dissertation, Florida State University, Tallahassee, Florida.Google Scholar
  12. Fenton, G. E. andD. A. Ritz. 1988. Changes in carbon and hydrogen stable isotope, ratios of macroalgae and seagrass during decomposition.Estuarine, Coastal and Shelf Science 26: 429–436.CrossRefGoogle Scholar
  13. Fry, B. andS. C. Wainright. 1991. Diatom sources of13C-rich carbon in marine food webs.Marine Ecology Progress Series 76: 149–157.CrossRefGoogle Scholar
  14. Gardner, W. S., R. Benner, G. Chin-loe, J. B. Cotner, B. J. Eadie, J. F. Cavaletto, andM. B. Lansing. 1994. Mineralization of organic material and bacterial dynamics in Mississippi River plume water.Estuaries 17:xxx-xxx.CrossRefGoogle Scholar
  15. Gearing, P., J. N. Gearing, T. F. Lytle, andJ. S. Lytle 1976. Hydrocarbons in 60 northeast Gulf of Mexico sediments: A preliminary survey.Geochimica et Cosmochimica Acta 40:1005–1017.CrossRefGoogle Scholar
  16. Gearing, P., F. E. Plucker, andP. L. Parker 1977. Organic carbon stable isotope ranos of continental margin sediments.Marine Chemistry 5:251–266.CrossRefGoogle Scholar
  17. Harper, D. E., L. D. McKinney, R. R. Salzer, andR. J. Case. 1981. The occurrence of hypoxic bottom water off the upper Texas coast and its effects on benthic biota.Contributions in Marine Sciences 24:53–79.Google Scholar
  18. Heaton, T. H. E. 1986. Isotopic studies of the nitrogen pollution in the hydrosphere and atmosphere: A review.Chemical Geology 59:87–102.CrossRefGoogle Scholar
  19. Hedges, J. I. 1992. Global biogeochemical cycles: Progress and problems.Marine Chemistry 39:67–94.CrossRefGoogle Scholar
  20. Hedges, J. I. andJ. R. Ertel. 1982. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products.Analytical Chemistry 54:174–178.CrossRefGoogle Scholar
  21. Hedges, J. I. andD. C. Mann. 1979. The lignin geochemistry of marine sediments from the southern Washington coast.Geochimica et Cosmochimica Acta 43:1809–1818.CrossRefGoogle Scholar
  22. Hedges, J. I. andP. L. Parker. 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico.Geochimica et Cosmochimica Acta 40:1019–1029.CrossRefGoogle Scholar
  23. Henrichs, S. M. 1992. Early diagenesis of organic matter in marine sediments: Progress and perplexity.Marine Chemistry 39:119–150.CrossRefGoogle Scholar
  24. Lohrenz, S. E., D. C. Redalje, G. L. Fahnenstiel, andG. F. Lang. 1992. Regulation and distribution of primary production in the northern Gulf of Mexico, p. 95–104.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  25. Macko, S. A., L. Entzeroth, andP. L. Parker. 1984. Regional differences in nitrogen and carbon isotopes on the continental shelf of the Gulf of Mexico.Naturwissenschaften 71:374–375.CrossRefGoogle Scholar
  26. Malcolm, R. L. and W. H. Durum. 1976. Organic carbon and nitrogen concentrations and annual organic carbon load of six selected rivers of the United States. United States Geological Survey. Water Supply Paper 1817-F. Reston, Virginia.Google Scholar
  27. Meade, R. H. and R. S. Parker. 1985. Sediment in rivers of the United States.In National Water Summary 1984. United States Geological Survey. Water Supply Paper 2275. Reston, Virginia.Google Scholar
  28. McArthur, J. M., R. V. Tyson, J., Thomsom, andD. Mattey. 1992. Early diagenesis of marine organic matter: Alteration of the carbon isotopic composition.Marine Geology 105:51–61.CrossRefGoogle Scholar
  29. McKee, B. A., J. G. Booth, andP. W. Swarzenski. 1990. The fate of particulates and particle reactive constituents in the Mississippi River/ocean mixing zone.Transactions of the American Geophysical Union 71:71.Google Scholar
  30. McKee, B. A., D. J. DeMaster, andC. A. Nittrouer. 1986. Temporal variability in the partitioning of thorium between dissolved and particulate phases on the Amazon shelf: Implications for the scavaging of particle-reactive species.Continental Shelf Research 6:87–106.CrossRefGoogle Scholar
  31. McNichol, A. P., C. Lee, andE. R. M. Druffel 1988. Carbon cycling in coastal sediments: 1. A Quantitative estimate of the remineralization of organic carbon in the sediments of Buzzards Bay, MA,Geochimica et Cosmochimica Acta 52:1531–1543.CrossRefGoogle Scholar
  32. Nelsen, T. A., P. Blackwelder, T. Hoop, B. McKee, N. Romer, C. Zarikian, andS. Metz 1994. Time-based correlations of biogenic, lithogenic and authigenic sediment components with anthropogenic inputs in the Gulf of Mexico NECOP study area.Estuaries 17:xxx-xxx.CrossRefGoogle Scholar
  33. Nelsen, T. A. andJ. H. Trefey. 1986. Pollutant-particle relationships in the marine environment: A study of particulates and their fate in a major river-delta-shelf system.Rapports et Proces-Verbaux des Reunions, Consiel International Pour l'Exploration de la Mer 186:115–127.Google Scholar
  34. Nittrouer, C. A., R. W. Sternberg, R. Carpenter, andJ. T. Bennett. 1979. The use of lead-210 geochronology as a sedimentological tool: Application to the Washington continental shelf.Marine Geology 31:297–316.CrossRefGoogle Scholar
  35. Parker, P. L. 1979. Organic geochemistry in the natural setting of the Gulf of Mexico, p. 103–130.In Proceedings of a Symposium on Environmental Research Needs in the Gulf of Mexico (GOMEX), 30 September-5 October, Port Aransas Marine Laboratory, University of Texas, Port Aransas, Texas.Google Scholar
  36. Parker, P. L., E. W. Behrens, J. A. Calder, andD. Shultz. 1972. Stable carbon isotope ratio variations in the organic carbon from Gulf of Mexico sediments.Contributions in Marine Science 16:139–147.Google Scholar
  37. Rabalais, N. N. andD. E. Harper. 1992. Studies of benthic biota in areas affected by moderate and severe hypoxia, p. 150–153.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  38. Rabalais, N. N., R. E. Turner, andW. J. Wiseman. 1992. Distribution and characteristics of hypoxia on the Louisiana shelf in 1990 and 1991, p. 15–20.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  39. Rabalais, N. N., R. E. Turner, W. J. Wiseman, andD. F. Boesch. 1991. A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985–1988, p. 35–47.In R. V. Tyson and T. H. Pearson (eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society Special Publication No. 58, The Geological Society, London.Google Scholar
  40. Redalje, D. C., S. E. Lohrenz, andG. L. Fahnenstiel. 1992. The relationship between primary, production and the export of POM from the photic zone in the Mississippi River plume and inner Gulf of Mexico shelf regions, p. 105–110.In Nutrient Enhanced Coastal Ocean Productivity. Publication Number TAMU-SG-92-109, Sea Grant Program, Texas A&M University, Galveston, Texas.Google Scholar
  41. Riley, G. A. 1937. The significance of the Mississippi River drainage for biological conditions in the northern Gulf of Mexico.Journal of Marine Research 1:60–74.Google Scholar
  42. Sackett, W. M. andR. R. Thompson. 1963. Isotopic organic carbon composition of Recent continental derived clastic sediments of eastern Gulf coast, Gulf of Mexico.Bulletin of the Americal Association of Petroleum Geologists 47:525–528.Google Scholar
  43. Schelske, C. L. andD. A. Hodell. 1991. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments.Limnology and Oceanography 36:961–975.Google Scholar
  44. Seitzinger, S. P. 1990. Demtrification in aquatic sediments, p. 301–322.In N. P. Revsbech and J. Sorensen (eds.), Denitrification in Soil and Sediment. Plenum Press, New York.Google Scholar
  45. Shokes, R. F. 1976. Rate-dependent distributions of lead-210 and interstitial sulfate in sediments of the Mississippi River delta. Ph.D. Dissertation., Texas A&M University, College Station, Texas.Google Scholar
  46. Showers, W. J. andD. G. Angle. 1986. Stable isotopic characterization of organic carbon accumulation on the Amazon continental shelf.Continental Shelf Research 6:227–244.CrossRefGoogle Scholar
  47. Spiker, E. C. andP. G. Hatcher. 1984. Carbon isotope fractionation of sapropelic organic matter during early diagenesis.Organic Geochemistry 5:283–290.CrossRefGoogle Scholar
  48. Thayer, G. W., J. J. Govoni, andD. W. Connally. 1983. Stable carbon isotope ratios of the planktonic food web in the northern Gulf of Mexico.Bulletin of Marine Science 33:247–256.Google Scholar
  49. Trefry, J. H., S. Metz, R. P. Trocine, andT. A. Nelsen. 1985. A decline in lead transport by the Mississippi River.Science 230:439–441.CrossRefGoogle Scholar
  50. Turner, R. E. andR. Kaswadji. 1987. Long-term changes in the Mississippi River water quality and its relationship to hypoxic continental shelf waters, p. 261–266.,In Estuarine and Coastal Management—Tools of the Trade. Proceedings of the Tenth National Conference of the Coastal Society. October 12–15, The Coastal Society. New Orleans, Louisiana.Google Scholar
  51. Turner, R. E. andN. N. Rabalais. 1991. Changes in Mississippi River water quality this century.BioScience 41:140–144.CrossRefGoogle Scholar
  52. United States Department of Commerce 1975, 1982, and 1989. Statistical Abstracts of the United States. Bureau of Census, United States Department of Commerce, Washington, D.C.Google Scholar
  53. Van Dover, G. L., J. F. Grassle, B. Fry, R. H. Garritt, andV. R. Starczak. 1992. Stable isotope evidence for entry of sewage-derived organic material into a deep-sea food web.Nature 360:153–156.CrossRefGoogle Scholar
  54. Velinsky, D. J., D. J. Burdige, andM. L. Fogel. 1991. Nitrogen diagenesis in anoxic marine sediments: Isotope effects, p. 154–162.In The Annual Report of the Director Geophysical Laboratory 1990–1991. Carnagie Institute, Washington, D.C.Google Scholar
  55. Wada, E. andA. Hattori. 1991. Nitrogen in the Sea: Forms, Abundances and Rate Processes. CRC Press, Boca Raton, Florida.Google Scholar
  56. Westrich, J. T. andR. A. Berner. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested.Limnology and Oceanography 29:236–249.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1994

Authors and Affiliations

  • Brian J. Eadie
    • 1
  • Brent A. McKee
    • 2
  • Margaret B. Lansing
    • 1
  • John A. Robbins
    • 1
  • Simonne Metz
    • 3
  • John H. Trefry
    • 3
  1. 1.Great Lakes Environmental Research LaboratoryNational Oceanic and Atmospheric AdministrationAnn Arbor
  2. 2.Louisiana Universities Marine ConsortiumChauvin
  3. 3.Department of OceanographyFlorida Institute of TechnologyMelbourne

Personalised recommendations