Advertisement

Estuaries

, Volume 20, Issue 1, pp 199–213 | Cite as

Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: A review of sampling design with focus on gear selection

  • Lawrence P. Rozas
  • Thomas J. Minello
Article

Abstract

Shallow estuarine habitats often support large populations of small nekton (fishes and decapod crustaceans), but unique characteristics of these habitats make sampling these nekton populations difficult. We discuss development of sampling designs and evaluate some commonly used devices for quantitatively sampling nekton populations. Important considerations of the sampling design include the size and number of samples, their distribution in time and space, and control of tide level. High, stable catch efficiency should be the most important grear characteristic considered when selecting a sampling device to quantify nekton densities. However, the most commonly used gears in studies of estuarine habitats (trawls and seines) have low, variable catch efficiency. Problems with consistently low catch efficiency can be corrected, but large unpredictable variations in this gear characteristic pose a much more difficult challenge. Study results may be bised if the varibility in catch efficiency is related to the treatments or habitat characteristics being measured in the sampling design. Enclosure devices, such as throw traps and drop samplers, have fewer variables influencing catch efficiency than do towed nets (i.e., trawls and seines); and the catch efficiency of these enclosure samplers does not appear to vary substantially with habitat characteristics typical of shallow estuarine areas (e.g., presence of vegetation). The area enclosed by these samplers is often small, but increasing the sample number can generally compensate for this limitation. We recommend using enclosure samplers for estimating densities of small nekton in shallow estuarine habitats because these samplers provide the most reliable quantitative data, and the results of studies using these samplers should be comparable. Many kinds of enclosure samplers are now available, and specific requirements of a project will distate which gear should be selected.

Keywords

Recovery Efficiency Oyster Reef Brown Shrimp American Fishery Society Otter Trawl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, D. M., S. K. Service, andM. V. Ogburn-Matthews. 1992. Factors influencing the collection efficiency of estuarine fishes.Transactions of the American Fisheries Society 121:234–244.CrossRefGoogle Scholar
  2. Bagenal, T. B. 1974. A buoyant net designed to catch freshwater fish larvae quantitatively.Freshwater Biology 4:107–109.CrossRefGoogle Scholar
  3. Baltz, D. M., C. Rokocinski, andJ. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary.Environmental Biology of Fishes 36:109–126.CrossRefGoogle Scholar
  4. Bass, G. andV. Guillory. 1979. Community structure of fishes inhabiting oceanic oyster reefs and spoil islands in the northeastern Gulf of Mexico.Northeast Gulf Science 3:116–121.Google Scholar
  5. Bozeman, E. L., Jr. andJ. M. Dean. 1980. The abundance of estuarine larval and juvenile fish in a South Carolina intertidal creek.Estuaries 3:89–97.CrossRefGoogle Scholar
  6. Breder, C. M. 1960. Design for a fry trap.Zoologica 45:155–160.Google Scholar
  7. Bros, W. E. andB. C. Cowell. 1987. A technique for optimiz-ing sample size (replication).Journal of Experimental Marine Biology and Ecology 114:63–71.CrossRefGoogle Scholar
  8. Cain, R. L. andJ. M. Dean. 1976. Annual occurrence, abundance and diversity of fish in a South Carolina intertidal creek.Marine Biology 36:369–379.CrossRefGoogle Scholar
  9. Carothers, P. E. andM. E. Chittenden, Jr. 1985. Relationships between trawl catch and tow duration for penaeid shrimp.Transactions of the American Fisheries Society 114:851–856.CrossRefGoogle Scholar
  10. Chabreck, R. H. 1971. Ponds and lakes of the Louisiana coastal marshes and their value to fish and wildlife.Proceedings of the Southeast Association of Game and Fish Commissioners 25:206–215.Google Scholar
  11. Chabreck, R. H. 1972. Vegetation, water and soil characteristics of the Louisiana coastal region. Louisiana Agricultural Experiment Station, Bulletin 664, Baton Rouge, Louisiana.Google Scholar
  12. Charles-Dominique, E. 1989. Catch effiencies of purse and beach seines in Ivory Coast lagoons.Fishery Bulletin 87:9111–921.Google Scholar
  13. Chick, J. H., F. Jordan, J. P. Smith, andC. C. McIvor. 1992. A comparison of four enclosure traps and methods used to sample fishes in aquatic macrophytes.Journal of Freshwater Ecology 7:353–361.Google Scholar
  14. Connolly, R. M. 1994. Comparison of fish catches from a buoyant pop net and a beach seine net in a shallow seagrass habitat.Marine Ecology Progress Series 109:305–309.CrossRefGoogle Scholar
  15. Creutzberg, F., G. C. A. Duineveld, andG. J. van Noort. 1987. The effect of different numbers of tickler chains on beamtrawl catches.Journal du Conseil. Conseil International pour l'Exploration de Ia Mer 43:159–168.Google Scholar
  16. Czapla, T. E. 1991. Diets and prey selection of pinfish and southern flounder in aHalodule wrightii seagrass meadow. Ph. D. Dissertation, Texas A & M University, College Station, Texas.Google Scholar
  17. DeAlteris, J. T., C. W. Recksiek, A. Fahfouhi, andX. Liuxiong. 1989. Comparison of the performance of two bottom-sampling trawls.Transactions of the American Fisheries Society 118:119–130.CrossRefGoogle Scholar
  18. Dewey, M. R., L. E. Holland-Bartels, andS. J. Zigler. 1989. Comparison of fish catches with buoyant pop nets and seines in vegetated and unvegetated habitats.North American Journal of Fisheries Management 9:249–253.CrossRefGoogle Scholar
  19. Dixon, P. M. andK. A. Garrett. 1993. Sampling ecological information: Choice of sample size, reconsidered.Ecological Modelling 68:67–73.CrossRefGoogle Scholar
  20. Dudgeon, D. 1990. Benthic community structure and the effect of rotenone piscicide on invertebrate drift and standing stocks in two Papua New Guinea streams.Archiv fur Hydrobiologie 119:35–53.Google Scholar
  21. Eckblad, J. W. 1991. How many samples should be taken?BioScience 41:346–348.CrossRefGoogle Scholar
  22. Engas, A. 1994. The effect of trawl performance and fish behaviour on the catching efficiency of demersal sampling trawls, p. 45–68.In A. Ferno and S. Olsen (eds.), Marine Fish Behaviour in Capture and Abundance Estimation. Fishing News Books, Oxford, United Kingdom.Google Scholar
  23. Fairweather, P. G. 1991. Statistical power and design requirements for environmental monitoring.Australian Journal of Marine and Freshwater Research 42:555–567.CrossRefGoogle Scholar
  24. Fossa, J. H. 1989. A drop-net method for samplingGobiusculus flavescens (Fabricius) and other fishes on hard and mixed bottoms with algal cover.Sarsia 74:107–113.Google Scholar
  25. Frieeman, B. J., H. S. Greening, andJ. D. Oliver. 1984. Comparison of three methods for sampling fishes and macroinvertebrates in a vegetated freshwater wetland.Journal of Freshwater Ecology 2:603–609.Google Scholar
  26. Gilmore, R. G., P. A. Hastings, G. R. Kulczycki, andB. L. Jennison. 1981. Crystalline rotenone as a selective fish toxin.Florida Scientist 44:193–203.Google Scholar
  27. Gilmore, R. G., J. K. Holt, R. S. Jones, G. R. Kulczycki, L. G. MacDowell, III, andW. C. Magley. 1978. Portable tripod drop net for estuarine fish studies.Fishery Bulletin 76:285–289.Google Scholar
  28. Goldstein, R. 1989. Power and sample size via MS/PC-DOS computers.The American Statistician 43:253–260.CrossRefGoogle Scholar
  29. Gosselink, J. G. 1984. The ecology of delta marshes of coastal Louisiana: A community profile. United States Department of the Interior, Fish and Wildlife Service, Washington, D.C. FWS/OBS-84/09.Google Scholar
  30. Gray, C. A. andJ. D. Bell. 1986. Consequences of two common techniques for sampling vagile macrofauna associated with the seagrassZostera capricorni.Marine Ecology Progress Series 28:43–48.CrossRefGoogle Scholar
  31. Green, R. H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. John Wiley and Sons, New York.Google Scholar
  32. Hartman, R. D. andW. H. Herke. 1987. Relative selectivity of five coastal marsh sampling gears.Contributions in Marine Science 30:17–26.Google Scholar
  33. Hellier, T. R. 1958. The drop-net quadrat, a new population sampling device.Publications of the Institute of Marine Science. University of Texas 5:165–168.Google Scholar
  34. Herke, W. H. 1969. A boat-mounted surface push-trawl for sampling juveniles in tidal marshes.Progressive Fish-Culturist 31:177–179.CrossRefGoogle Scholar
  35. Hettler, W. F. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA.Marine Ecology Progress Series 56:111–118.CrossRefGoogle Scholar
  36. Hewitt, J. E., G. B. McBride, R. D. Pridmore, andS. F. Thrush. 1993. Patchy distributions: Optimizing sample size.Environmental Monitoring and Assessment 27:95–105.CrossRefGoogle Scholar
  37. Higer, A. L. andM. C. Kolipinski. 1967. Pull-up trap: A quantitative device for sampling shallow-water animals.Ecology 48:1008–1009.CrossRefGoogle Scholar
  38. Hodson, R. G., J. O. Hackman, andC. R. Bennett. 1981. Food habits of young spots in nursery areas of the Cape Fear River Estuary, North Carolina.Transactions of the American Fisheries Society 110:495–501.CrossRefGoogle Scholar
  39. Hoese, H. D. andR. S. Jones. 1963. Seasonality of larger animals in a Texas turtle grass community.Publications of the Institute of Marine Science, University of Texas 9:37–46.Google Scholar
  40. Howard, R. K. andK. W. Lowe. 1984. Predation by birds as a factor influencing the demography of an intertidal shrimp.Journal of Experimental Marine Biology and Ecology 74:35–52.CrossRefGoogle Scholar
  41. Hunter, J. R., D. C. Aasted, andC. T. Mitchell. 1966. Design and use of a miniature purse seine.Progressive Fish-Culturist 28:56–59.CrossRefGoogle Scholar
  42. Jacobsen, T. andJ. A. Kushlan. 1987. Sources of sampling bias in enclosure fish trapping: Effects on estimates of density and diversity.Fisheries Research 5:401–412.CrossRefGoogle Scholar
  43. Johnson, B. N., R. A. Stein, andR. F. Carline. 1988. Use of a quadrat rotenone technique and bioenergetics modeling to evaluate prey availability to stocked piscivores.Transactions of the American Fisheries Society 117:127–141.CrossRefGoogle Scholar
  44. Johnson, D. L. andL. A. Nielsen. 1983. Sampling considerations, p. 1–22.In L. A. Nielsen and D. L. Johnson (eds.). Fisheries Techniques. American Fisheries Society, Bethesda, Maryland.Google Scholar
  45. Jones, R. S. 1965. Fish stocks from a helicopter-borne purse net sampling of Corpus Christi Bay, Texas, 1962–1963.Publications of the Institute of Marine Science, University of Texas 10:68–75.Google Scholar
  46. Kashkin, N. I. andN. V. Parin. 1983. Quantitative assessment of micronektonic fishes by nonclosing gear (a review).Biological Oceanography 2:263–287.Google Scholar
  47. Kjelson, M. A. 1977. Estimating the size of juvenile fish populations in southeastern coastal-plain estuaries, p. 71–90.In W. Van Winkle (ed.), Proceedings of the Conference on Assessing the Effects of Power-Plant-Induced Mortality on Fish Populations. Pergamon Press, New York.Google Scholar
  48. Kjelson, M. A. andD. R. Colby. 1977. The evaluation and use of gear efficiencies in the estimation of estuarine fish abundance, p. 416–424.In M. Wiley (ed.), Estuarine Processes, Vol. II. Circulation, Sediments, and Transfer of Material in the Estuary. Academic Press, Inc., New York.Google Scholar
  49. Kjelson, M. A. andG. N. Johnson. 1973. Description and evaluation of a portable drop-net for sampling nekton populations.Proceedings of the Southeast Association of Game and Fish Commissioners 27:653–662.Google Scholar
  50. Kjelson, M. A. andG. N. Johnson. 1978. Catch efficiency of a 6.1 m trawl for estuarine fish populations.Transactions of the American Fisheries Society 107:246–254.CrossRefGoogle Scholar
  51. Kjelson, M. A., W. R. Turner, andG. N. Johnson. 1975. Description of a stationary drop-net for estimating nekton abundance in shallow waters.Transactions of the American Fisheries Society 104:46–49.CrossRefGoogle Scholar
  52. Kleypas, J. andJ. M. Dean. 1983. Migration and feeding of the predatory fish,Bairdiella chrysura Lacépède, in an intertidal creek.Journal of Experimental Marine Biology and Ecology 72:199–209.CrossRefGoogle Scholar
  53. Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.CrossRefGoogle Scholar
  54. Kneib, R. T. andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (l.) on a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31:121–140.CrossRefGoogle Scholar
  55. Koenig, C. C. and P. L. Colin. 1995. Absolute abundance and survival of juvenile gag,Mycteroperca microlepis (Pisces: Serranidae), in seagrass beds of the northeastern Gulf of Mexico.Proceedings of the Gulf and Caribbean Fisheries Institute 45: (in press).Google Scholar
  56. Kuipers, B. R., B. MacCurrin, J. M. Miller, H. W. van Der Veer, andJ. I. J. Witte. 1992. Small trawls in juvenile flatfish research: Their development and efficiency.Netherlands Journal of Sea Research 29:109–117.CrossRefGoogle Scholar
  57. Kushlan, J. A. 1974. Quantitative sampling of fish populations in shallow, freshwater environments.Transactions of the American Fisheries Society 103:348–352.CrossRefGoogle Scholar
  58. Kushlan, J. A. 1981. Sampling characteristics of enclosure fish traps.Transactions of the American Fisheries Society 110:557–562.CrossRefGoogle Scholar
  59. Lambou, V. W. 1959. Block-off net for taking fish population samples.Progressive Fish-Culturist 21:91–98.CrossRefGoogle Scholar
  60. Larson, E. W., D. L. Johnson, andW. E. Lynch, Jr. 1986. A buoyant pop net for accurately sampling fish at artificial habitat structures.Transactions of the American Fisheries Society 115:351–355.CrossRefGoogle Scholar
  61. LaSalle, M. W., M. C. Landin, andJ. G. Sims. 1991. Evaluation of the flora and fauna of aSpartina alterniflora marsh established on dredged material in Winyah Bay, South Carolina.Wetlands 11:191–208.Google Scholar
  62. Latham, P. J., L. G. Pearlstine, andW. M. Kitchens. 1994. Species association changes across a gradient of freshwater, oligohaline, and mesohaline tidal marshes along the lower Savannah River.Wetlands 14:174–183.Google Scholar
  63. Leber, K. M. andH. S. Greening. 1986. Community studies in seagrass meadows: A comparison of two methods for sampling macroinvertebrates and fishes.Fishery Bulletin 84:443–450.Google Scholar
  64. Lenarz, W. H. andP. B. Adams. 1980. Some statistical considerations of the design of trawl surveys for rockfish (Scorpaenidae).Fishery Bulletin 78:659–674.Google Scholar
  65. Lewis, R. M., W. F. Hettler, Jr.,E. P. H. Wilkens, andG. N. Johnson. 1970. A channel net for catching larval fishes.Chesapeake Science 11:196–197.CrossRefGoogle Scholar
  66. Loesch, J., H. Bishop, A. Crowe, R. Kuckyr, andP. Wagner. 1976. Technique for estimating trawl efficiency in catching brown shrimp (Penaeus aztecus), Atlantic croaker (Micropogon undulatus) and spot (Leiostomus xanthurus).Gulf Research Reports 5:29–33.Google Scholar
  67. Loftus, W. F. andA.-M. Eklund. 1994. Long-term dynamics of an Everglades small-fish assemblage, p. 461–483.In S. M. Davis and J. C. Ogden (eds.), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, Florida.Google Scholar
  68. Lyons, J. 1986. Capture efficiency of a beach seine for seven freshwater fishes in a north-temperate lake.North American Journal of Fisheries Management 6:288–289.CrossRefGoogle Scholar
  69. Manly, B. F. J. 1992. Bootstrapping for determining sample sizes in biological studies.Journal of Experimental Marine Biology and Ecology 158:189–196.CrossRefGoogle Scholar
  70. Matlock, G. C., J. E. Weaver, andA. W. Green. 1982. Sampling nearshore estuarine fishes with rotenone.Transactions of the American Fisheries Society 111:326–331.CrossRefGoogle Scholar
  71. McIvor, C. C. andW. E. Odum. 1986. The flume net: A quantitative method for sampling fishes and macrocrustaceans on tidal marsh surfaces.Estuaries 9:219–224.CrossRefGoogle Scholar
  72. McIvor, C. C., L. P. Rozas, andW. F. Odum 1989. Use of the marsh surface by fishes in tidal freshwater wetlands, p. 541–552.In R. R. Sharitz and J. W. Gibbons (eds.), Freshwater Wetlands and Wildlife, CONF-8603101, United States Department of Energy Symposium Series No. 61, Office of Scientific and Technical Information, Oak Ridge, Tennessee.Google Scholar
  73. Millar, R. B. 1992. Estimating the size-selectivity of fishing gear by conditioning on the total catch.Journal of the American Statistical Association 87:962–968.CrossRefGoogle Scholar
  74. Miller, R. E., D. W. Campbell, andP. J. Lunsford. 1980. Comparison of sampling devices for the juvenile blue crab,Callinectes sapidus.Fishery Bulletin 78:196–198.Google Scholar
  75. Miller, S. J., J. G. Wullschleger, L. A. Bull, L. J. Davis, D. McCall, D. D. Fox, andD. W. Brown. 1990. Comparisons of Wegener Ring and 0.08-hectare block net samples of fishes in vegetated habitats.Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 44:67–75.Google Scholar
  76. Minello, T. J., J. W. Webb, Jr, R. J. Zimmerman, R. B. Wooten, J. L. Martinez, T. J. Baumer, and M. C. Pattillo. 1991. Habitat availability and utilization by benthos and nekton in Hall's Lake and West Galveston Bay. United States Department of Commerce, National Oceanographic and Atmospheric Administration Technical Memorandum, NMFS-SEFC-275, Galveston, Texas.Google Scholar
  77. Minello, T. J., R. J. Zimmerman, andR. Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh.Wetlands 14:184–198.Google Scholar
  78. Mitsch, W. J. andJ. G. Gosselink. 1986. Wetlands. Van Nostrand Reinhold Company, Inc., New York.Google Scholar
  79. Moseley, F. N. andB. J. Copeland. 1969. A portable drop-net for representative sampling of nekton.Contributions in Marine Science 14:37–45.Google Scholar
  80. Nielson, L. 1983. Variation in the catchability of yellow perch in an otter trawl.Transactions of the American Fisheries Society 112:53–59.CrossRefGoogle Scholar
  81. Orth, R. J. andJ. van Montfrans. 1987. Utilization of a seagrass meadow and tidal marsh creek by blue crabs,Callinectes sapidus. I. Seasonal and annual variation in abundance with emphasis on post-settlement juveniles.Marine Ecology Progress Series 41:283–294.CrossRefGoogle Scholar
  82. Palmer, M. W. andP. S. White. 1994. Scale dependence and the species-area relationship.American Naturalist 144:717–740.CrossRefGoogle Scholar
  83. Parsley, M. J., D. E. Palmer, andR. W. Burkhardt. 1989. Variation in capture efficiency of a beach seine for small fishes.North American Journal of Fisheries Management 9:239–244.CrossRefGoogle Scholar
  84. Pearcy, W. G. andS. S. Myers. 1974. Larval fishes of yaquina Bay, Oregon: A nursery ground for marine fishes?Fishery Bulletin 72:201–213.Google Scholar
  85. Peterman, R. M. 1990. Statistical power analysis can improve fisheries research and management.Canadian Journal of Fisheries and Aquatic Sciences 47:2–15.CrossRefGoogle Scholar
  86. Peters, D. S. andF. A. Cross. 1992. What is coastal fish habitat. p. 17–22.In R. H. Stroud (ed.), Stemming the Tide of Coastal Fish Habitat Loss. National Coalition for Marine Conservation, Inc., Savannah, Georgla.Google Scholar
  87. Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisian tidal marsh.Estuaries 17:235–262.CrossRefGoogle Scholar
  88. Pihl, L. andR. Rosenberg. 1982. Production, abundance, and biomass of mobile epibenthic marine fauna in shallow waters, western Sweden.Journal of Experimental Marine Biology and Ecology 57:273–301.CrossRefGoogle Scholar
  89. Pomeroy, L. R. andJ. Imberger. 1981. The physical and chemical environment, p. 21–36.In L. R. Pomeroy and R. G. Wiegart (eds.), The Ecology of a Salt Marsh, Springer-Verlag, New York.Google Scholar
  90. Pringle, J. D. 1984. Efficiency estimates for various quadrat sizes used in benthic sampling.Canadian Journal of Fisheries and Aquatic Sciences 41:1485–1489.CrossRefGoogle Scholar
  91. Pullen, E. J., C. R. Mock, andR. D. Ringo. 1968. A net for sampling the intertidal zone of an estuary.Limnology and Oceanography 13:200–202.CrossRefGoogle Scholar
  92. Robblee, M. B. andJ. C. Zieman. 1984. Diel variation in the fish fauna of a tropical seagrass feeding ground.Bulletin of Marine Science 34:335–345.Google Scholar
  93. Rogers, B. D. 1985. A small push-otter trawl for shallow marshes.North American Journal of Fisheries Management 5:411–415.CrossRefGoogle Scholar
  94. Rountree, R. A. andK. W. Able. 1992. Fauna of polyhaline subtidal marsh creeks in southern New Jersey: Composition, abundance, and biomass.Estuaries 15:171–185.CrossRefGoogle Scholar
  95. Rozas, L. P. 1992. Bottomless lift net for quantitatively sampling nekton on intertidal marshes.Marine Ecology Progress Series 89:287–292.CrossRefGoogle Scholar
  96. Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creekbanks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.CrossRefGoogle Scholar
  97. Rozas, L. P. and T. J. Minello. 1998. Nekton use of salt marsh, seagrass, and nonvegetated habitats in a south Texas (USA) estuary.Bulletin of Marine Science 63: (in press).Google Scholar
  98. Rozas, L. P. andW. E. Odum. 1987. Fish and macrocrustacean use of submerged plant beds in tidal freshwater marsh creeks.Marine Ecology Progress Series 38:101–108.CrossRefGoogle Scholar
  99. Rozas, L. P. andD. J. Reed. 1994. Comparing nekton assemblages of subtidal habitats in pipeline canals traversing brackish and saline marshes in coastal Louisiana.Wetlands 14:262–275.Google Scholar
  100. Sargent, W. B. andP. R. Carlson, Jr. 1987. The utility of Breder traps for sampling mangrove and high marsh fish assemblages, p. 194–205.In F. J. Webb (ed.), Proceedings of the Fourteenth Annual Conference on Wetlands Restoration and Creation. Hillsborough Community College, Tampa, Florida.Google Scholar
  101. Serafy, J. E., R. M. Harrell, andJ. C. Stevenson. 1988. Quantitative sampling of small fishes in dense vegetation: Design and field testing of portable “pop-nets”.Journal of Applied Ichthyology 4:149–157.CrossRefGoogle Scholar
  102. Sheridan, P. F. 1992. Comparative habitat utilization by estuarine macrofauna within the mangrove ecosystem of Rookery Bay, Florida.Bulletin of Marine Science 50:21–39.Google Scholar
  103. Shireman, J. V., D. E. Colle, andD. F. DuRant. 1981. Efficiency of rotenone sampling with large and small blocks nets in vegetated and open-water habitats.Transactions of the American Fisheries Society 110:77–80.CrossRefGoogle Scholar
  104. Sogard, S. M. andK. W. Able. 1991. A comparison of eelgrans, sea lettuce macroalgae, and marsh creeks as habitat for epibenthic fishes and decapods.Estuarine Coastal and Shelf Science 33:501–519.CrossRefGoogle Scholar
  105. Sogard, S. M., G. V. N. Powell, andJ. G. Holmquist. 1989a. Utilization by fishes of shallow, seagrass-covered mudbanks in Florida Bay. I. Species composition and spatial heterogeneity.Environmental Biology of Fishes 24:53–65.CrossRefGoogle Scholar
  106. Sogard, S. M., G. V. N. Powell, andJ. G. Holmquist. 1989b. Utilization by fishes of shallow, seagrass-covered mudbanks in Florida Bay. 2. Diel and tidal patterns.Environmental Biology of Fishes 24:81–92.CrossRefGoogle Scholar
  107. Sokal, R. R. andF. J. Rohlf. 1981. Biometry. 2nd Edition, W. H. Freeman and Co., San Francisco, California.Google Scholar
  108. Sullivan, L. F., D. A. Emiliani, andK. N. Baxter. 1985. Standing stock of juvenile brown shrimp,Penaeus aztecus, in Texas coastal ponds.Fishery Bulletin 83:677–682.Google Scholar
  109. Thayer, G. W., D. R. Colby, andW. F. Hettler, Jr. 1987. Utilization of the red mangrove prop root habitat by fishes in south Florida.Marine Ecology Progress Series 35:25–38.CrossRefGoogle Scholar
  110. Thayer, G. W., D. R. Colby, M. A. Kjelson, andM. P. Weinstein. 1983. Estimates of larval-fish abundance: Diurnal variation and influences of sampling gear and towing speed.Transactions of the American Fisheries Society 112:272–279.CrossRefGoogle Scholar
  111. Thomas, J. L., R. J. Zimmerman, andT. J. Minello. 1990. Abundance patterns of juvenile blue crabs (Callinectes sapidus) in nursery habitats of two Texas bays.Bulletin of Marine Science 46:115–125.Google Scholar
  112. Vance, D. J., D. S. Heales, andN. R. Loneragan. 1994. Seasonal, diel and tidal variation in beam-trawl catches of juvenile grooved tiger prawns,Panaeus semisulcatus (Decapoda: Penaeidae), in the Embley River, north-eastern Gulf of Carpentaria, Australia.Australian Journal of Marine and Freshwater Research 45:35–42.CrossRefGoogle Scholar
  113. Vance, D. J. andD. J. Staples. 1992. Catchability and sampling of three species of juvenile penaeid prawns in the Embley River, Gulf of Carpentaria, Australia.Marine Ecology Progress Series 87:201–213.CrossRefGoogle Scholar
  114. Wathne, F. 1977. Performance of trawls used in resource assessment.Marine Fisheries Review 39:16–23.Google Scholar
  115. Wegener, W., D. Holcomb, andV. Williams. 1973. Sampling shallow water fish populations using the Wegener ring.Proceedings of the Southeast Association of Game and Fish Commissioners 27:663–674.Google Scholar
  116. Weinstein, M. P. 1982. A need for experimental work in estuarine fisheries ecology.Northeast Gulf Science 5:59–64.Google Scholar
  117. Weinstein, M. P. andR. W. Davis. 1980. Collection efficiency of seine and rotenone samples from tidal creeks, Cape Fear River, North Carolina.Estuaries 3:98–105.CrossRefGoogle Scholar
  118. Wenner, E. L. andH. R. Beatty. 1993. Utilization of shallow estuarine habitats in South Carolina, USA, by postlarval and juvenile stages ofPenaeus spp. (Decapoda, Penaeidae).Journal of Crustacean Biology 13:280–295.CrossRefGoogle Scholar
  119. Workman, I. K., C. W. Taylor, andJ. W. Watson. 1995. Improving pelagic fish retention in sampling trawls with a fish funnel.Scientia Marina 59:581–585.Google Scholar
  120. Zimmerman, R. J. andT. J. Minello. 1984. Densities ofPenaeus aztecus, Penaeus setiferus, and other natant macrofauna in a Texas salt marsh.Estuaries 7:421–433.CrossRefGoogle Scholar
  121. Zimmerman, R. J., T. J. Minello, T. Baumer, and M. Castiglione. 1989. Oyster reef as habitat for estuarine macrofauna. United States Department of Commerce, National Oceanographic and Atmospheric Administration Technical Memorandum, NMFS-SEFC-249, Galveston, Texas.Google Scholar
  122. Zimmerman, R. J., T. J. Minello, andG. Zamora. 1984. Selection of vegetated habitat by brown shrimp,Penaeus aztecus, in a Galveston Bay salt marsh.Fishery Bulletin 82:325–336.Google Scholar
  123. Zimmerman, R. J., T. J. Minello, G. Zamora, Jr., andE. Martinez. 1986. Measurements of estuarine shrimp densities applied to catch predictions, p. 37–55.In A. M. Landry and E. F. Klima (eds.), Proceedings of the Shrimp Yield Prediction Workshop. Texas A & M University Sea Grant College Program, Galveston, Texas.Google Scholar

Copyright information

© Estuarine Research Federation 1997

Authors and Affiliations

  • Lawrence P. Rozas
    • 1
  • Thomas J. Minello
    • 1
  1. 1.National Oceanic and Atmospheric Administration National Marine Fisheries ServiceSoutheast Fisheries Science CenterGalveston

Personalised recommendations