Advertisement

Estuaries

, Volume 16, Issue 3, pp 521–532 | Cite as

Trace element transformation during the development of an estuarine algal bloom

  • James G. Sanders
  • Gerhardt F. Riedel
Article

Abstract

Copper and arsenic underwent large changes in chemical form during the development and senescence of natural phytoplankton blooms in the Patuxent River, a subestuary of Chesapeake Bay in Maryland. Arsenate was rapidly reduced to arsenite and methylated species. At a total arsenic concentration of 20 nmol l−1, arsenate reduction rates ranged from 50 amol cell−1 d−1 to >230 amol cell−1 d−1, with the rate and extent of reduction dependent upon the concentration of arsenic, the dominant phytoplankton present, the season, and the degree of decline in phosphorus concentrations during bloom development. In general, the percentage of organically-associated copper was lowest (20–40% of total copper) during periods of rapid cell growth and highest (60–100% of total copper) during periods of cell decline or periods of dominance by red tide-forming dinoflagellates, a pattern associated with periods of high release of organic compounds during either bloom senescence or dense algal blooms. The end result of biological mediation was to increase the proportion of each element present in a less toxic form, thus affecting the potential toxicity to a natural ecosystem.

Keywords

Arsenic Phytoplankton Dinoflagellate Algal Bloom Centric Diatom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andreae, M. O. 1978. Distribution and speciation of arsenic in natural waters and some marine algae.Deep-Sea Research 25:391–402.CrossRefGoogle Scholar
  2. Blanck, H., K. Holmgren, L. Landner, H. Norin, M. Notini, A. Rosemarin, andB. Sundelin. 1989. Advanced hazard assessment of arsenic in the Swedish environment, p. 256–328.In L. Landner (ed.), Chemicals in the Aquatic Environment. Springer-Verlag, Berlin.Google Scholar
  3. Blum, J. J. 1966. Phosphate uptake by phosphate-starvedEuglena.Journal of General Physiology 49:1125–1136.Google Scholar
  4. Boyle, E. A. andS. Huested. 1983. Aspects of the surface distributions of copper, nickel, and lead in the North Atlantic and North Pacific, p. 379–394.In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton, and E. D. Goldberg (eds.), Trace Metals in Sea Water. Plenum Press, New York.Google Scholar
  5. Braman, R. S., D. L. Johnson, C. C. Foreback, J. M. Ammons, andJ. L. Bricker. 1977. Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds.Analytical Chemistry 49:621–625.CrossRefGoogle Scholar
  6. Brockmann, U. andE. Dahl. 1990. Distribution of organic compounds during a bloom ofChrysochromulina polylepis in the Skagerrak, p. 104–109.In E. Granell, B. Sundstrom, L. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton. Elsevier, New York.Google Scholar
  7. Coale, K. H. andK. W. Bruland. 1988. Copper complexation in the northeast Pacific.Limnology and Oceanography 33:1084–1101.Google Scholar
  8. Davis, C. O. 1982. The importance of understanding phytoplankton life strategies in the design of enclosure experiments, p. 323–332.In G. D. Grice and M. R. Reeve (eds.), Marine Mesocosms. Springer-Verlag, New York.Google Scholar
  9. D’Elia, C. F., J. G. Sanders, andW. R. Boynton. 1986. Nutrient enrichment studies in a coastal plain estuary: Phytoplankton growth in large-scale, continuous cultures.Canadian Journal of Fisheries and Aquatic Sciences 43:397–406.Google Scholar
  10. Eaton, A. andC. Chamberlain. 1982. Copper cycling in the Patuxent estuary and condenser micro-fouling studies. Johns Hopkins University, Baltimore. 70 p.Google Scholar
  11. Evans, D. W., N. H. Cutshall, F. A. Cross, andD. A. Wolfe. 1977. Manganese cycling in the Newport River Estuary, North Carolina.Estuarine and Coastal Marine Science 5:71–80.CrossRefGoogle Scholar
  12. Fisher, N. S. andJ. G. Fabris. 1982. Complexation of Cu, Zn, and Cd by metabolites excreted from marine diatoms.Marine Chemistry 11:245–255.CrossRefGoogle Scholar
  13. Goldman, J. C., K. R. Tenore, andH. I. Stanley. 1973. Inorganic nitrogen removal from wastewater: Effect on phytoplankton growth in coastal marine waters.Science 180:955–956.CrossRefGoogle Scholar
  14. Guillard, R. R. L. andJ. H. Ryther. 1962. Studies on marine planktonic diatoms.Canadian Journal of Microbiology 8:229–239.Google Scholar
  15. Hellebust, J. A. 1965. Exeretion of some organic compounds by marine phytoplankton.Limnology and Oceanography 10:192–206.Google Scholar
  16. Holmes, R. W., P. M. Williams, andR. W. Eppley. 1967. Red water in La Jolla Bay, 1964–1966.Limnology and Oceanography 12:503–512.Google Scholar
  17. Kingston, H. M., I. L. Barnes, T. J. Brady, T. C. Rains, andM. A. Champ. 1978. Separation of eight transition elements from alkali and alkaline earth elements in estuarine and seawater with chelating resin and their determination by graphite furnace atomic absorption spectrophotometry.Analytical Chemistry 50:2064–2070.CrossRefGoogle Scholar
  18. Margalef, R. 1962. Succession in marine populations.Advancing Frontiers of Plant Sciences New Delhi 2:137–188.Google Scholar
  19. McKnight, D. M. andF. M. M. Morel. 1979. Release of weak and strong copper-complexing agents by algae.Limnology and Oceanography 24:823–837.CrossRefGoogle Scholar
  20. McLachlan, J. 1973. Growth media—Marine, p. 25–51.In J. R. Stein (ed.), Handbook of Phycological Methods. Cambridge University Press, Cambridge.Google Scholar
  21. Mills, G. L., A. K. Hanson, J. G. Quinn, W. R. Lammela, andN. D. Chasten. 1982. Chemical studies of copper-organic complexes isolated from estuarine waters using C18 reverse phase liquid chromatography.Marine Chemistry 11:355–377.CrossRefGoogle Scholar
  22. Moffett, J. W. andR. G. Zika. 1987. Reaction kinetics of hydrogen peroxide with copper and iron in seawater.Environmental Sciences and Technology 21:804–810.CrossRefGoogle Scholar
  23. Morris, A. W. andP. Foster. 1971. The seasonal variation of dissolved organic carbon in the inshore waters of the Menai Strait in relation to primary production.Limnology and Oceanography 16:987–989.Google Scholar
  24. Newell, A. D. andJ. G. Sanders. 1986. Relative copper-binding capacities of dissolved organic compounds in a coastal-plain estuary.Environmental Science and Technology 20:817–821.CrossRefGoogle Scholar
  25. Nissen, P. andA. A. Benson. 1982. Arsenic metabolism in freshwater and terrestrial plants.Physiologia Plantarum 54: 446–450.CrossRefGoogle Scholar
  26. Riley, J. P. andD. Taylor. 1968. Chelating resins for the concentration of trace elements from seawater and their analytical use in conjunction with atomic absorption spectrophotometry.Analytica Chimica Acta 40:479–485.CrossRefGoogle Scholar
  27. Sanders, J. G. 1979. Effects of arsenic speciation and phosphate concentration on arsenic inhibition ofSkeletonema costatum (Bacillariophyceae).Journal of Phycology 15:424–428.Google Scholar
  28. Sanders, J. G. 1980. Arsenic cycling in marine systems.Marine Environmental Research 3:257–266.CrossRefGoogle Scholar
  29. Sanders, J. G. 1983. Role of marine phytoplankton in determining the chemical speciation and biogeochemical cycling of arsenic.Canadian Journal of Fisheries and Aquatic Sciences 40(Supplement 2):192–196.Google Scholar
  30. Sanders, J. G. 1985. Arsenic geochemistry in Chesapeake Bay: Dependence upon anthropogenic inputs and phytoplankton species composition.Marine Chemistry 17:329–340.CrossRefGoogle Scholar
  31. Sanders, J. G. andS. J. Cibik. 1985. Adaptive behavior of euryhaline phytoplankton communities to arsenic stress.Marine Ecology Progress Series 22:199–205.CrossRefGoogle Scholar
  32. Sanders, J. G. andS. J. Cibik. 1988. Response of Chesapeake Bay phytoplankton communities to low levels of toxic substances.Marine Pollution Bulletin 19:439–444.CrossRefGoogle Scholar
  33. Sanders, J. G., S. J. Cibik, C. F. D’Ellia, andW. R. Boynton. 1987. Nutrient enrichment studies in a coastal plain estuary: Changes in phytoplankton species composition.Canadian Journal of Fisheries and Aquatic Science 44:83–90.CrossRefGoogle Scholar
  34. Sanders, J. G., R. W. Osman, andG. F. Riedel. 1989. Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filter feeding invertebratesEurytemora affinis, Balanus improvisus, andCrassostrea virginica.Marine Biology 103:319–325.CrossRefGoogle Scholar
  35. Sanders, J. G. andH. L. Windom. 1980. The uptake and reduction of arsenic species by marine algae.Estuarine and Coastal Marine Science 10:555–567.CrossRefGoogle Scholar
  36. Sharp, J. H. 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it?.Limnology and Oceanography 22:381–399.Google Scholar
  37. Sunda, W. G., R. T. Barber, andS. A. Huntsman. 1981. Phytoplankton growth in nutrient rich seawater: Importance of copper-manganese cellular interactions.Journal of Marine Research 39:567–586.Google Scholar
  38. Sunda, W. G. andR. R. L. Guillard. 1976. The relationship between cupric activity and the toxicity of copper to phytoplankton.Journal of Marine Research 34:511–529.Google Scholar
  39. Sunda, W. G., P. A. Tester, andS. A. Huntsman. 1990. Toxicity of trace metals toAcartia tonsa in the Elizabeth River and southern Chesapeake Bay.Estuarine and Coastal Shelf Science 30:207–221.CrossRefGoogle Scholar
  40. Wallace, G. T., N. Dudek, R. D. Dulmage, andO. Mahoney. 1983. Trace element distributions in the Gulf Stream adjacent to the southeastern Atlantic continental shelf—Influence of atomospheric and shelf water inputs.Canadian Journal of Fisheries and Aquatic Sciences 40 (Supplement 2):183–191.Google Scholar
  41. Wangersky, P. J., S. Bradley Moran, R. J. Pett, D. E. Slauenwhite, and andX. Zhou. 1989. Biological control of trace metal residence times: An experimental approach.Marine Chemistry 28:215–226.CrossRefGoogle Scholar
  42. Zhou, X., D. E. Slauenwhite, R. J. Pett, andP. J. Wangersky. 1989. Production of copper-complexing organic ligands during a diatom bloom: Tower tank and batch culture experiments.Marine Chemistry 27:19–30.CrossRefGoogle Scholar
  43. Zhou, X. andP. J. Wangersky. 1989. Production of copper-complexing organic ligands by the marine diatomPhaeodactylum tricornutum in a cage culture turbidostat.Marine Chemistry 26:239–259.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1993

Authors and Affiliations

  • James G. Sanders
    • 1
  • Gerhardt F. Riedel
    • 1
  1. 1.Benedict Estuarine Research LaboratoryThe Academy of Natural SciencesBenedict

Personalised recommendations