, Volume 17, Issue 1, pp 235–262 | Cite as

The value of salt marsh edge vs interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh

  • G. W. Peterson
  • R. E. Turner


Flume nets of various lengths and a 3-m seine were used to sample the fishes and macrocrustaceans using a flooded Louisiana salt marsh and the adjacent tidal creek. The experiment allowed for species-specific comparisons of the flooded marsh at the creek edge versus the interior. Of the 37,667 organisms collected in flume nets from January through November 1989, 89% were decapods (nine species) and 11% were fish (29 species). An additional 18,539 organisms (75% decapods and 25% fish) were collected from concurrent seine samples taken from July through November. Comparison of catches among different flume lengths and low tide versus high tide seine collections revealed distinct patterns of marsh habitat utilization. Densities of most organisms were highest within 3 m of the water’s edge, but significant numbers of marsh-resident fish species used the interior marshes. The edge marshes appeared to be used by both transient and resident species; however, the interior marshes were used primarily by marsh-resident species (Cyprinodontiformes andPalaemonetes sp.) that are excellent food sources for adult transient-species. Four zonations of marsh use are described for transients, residents, and rare species.


Blue Crab Marsh Surface Grass Shrimp Marsh Edge Spotted Seatrout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baltz, D. M., C. Rakocinski, andJ. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary.Environmental Biology of Fishes 36:109–126.CrossRefGoogle Scholar
  2. Boesch, D. F. andR. E. Turner. 1984. Dependence of fishery species on salt marshes: The role of food and refuge.Estuaries 7:460–468.CrossRefGoogle Scholar
  3. Bozeman, E. L., Jr. andJ. M. Dean. 1980. The abundance of estuarine larval and juvenile fish in a South Carolina intertidal creek.Estuaries 3:89–97.CrossRefGoogle Scholar
  4. Butner, A. andB. H. Brattstrom. 1960. Local movements inMenidia andFundulus.Copeia 1960:139–141.CrossRefGoogle Scholar
  5. Darnell, R. 1958. Food habits of fishes and larger invertebrates of Lake Pontchartrain, Louisiana, an estuarine community.Publications of the Institute of the Marine Science of Texas 5:353–416.Google Scholar
  6. Darnell, R. 1961. Trophic spectrum of an estuarine community, based on studies of Lake Pontchartrain, Louisiana.Ecology 42:553–568.CrossRefGoogle Scholar
  7. Darnell, R. M. 1967. Organic detritus in relation to the estuarine ecosystem, p. 376–383.In G. F. Lauff (ed.), Estuaries. American Association for the Advancement of Science publication no. 83. Washington, D.C.Google Scholar
  8. Day, J. W. Jr.,W. G. Smith, P. R. Wagner, andW. C. Stowe. 1973. Community structure and carbon budget of a salt marsh and shallow bay estuarine system in Louisiana. Center for Wetland Resources, Louisiana State University, Baton Rouge, Louisiana. Publication no. LSU-SG-72-04.Google Scholar
  9. Deegan, L. A. and B. A. Thompson. 1985. The ecology of fish communities in the Mississippi River deltaic plain, Chapter 4, p. 35–46.In A. Yanez-Arancibia (ed.)., Fish Community Ecology in Estuaries and Coastal Lagoons: Towards an Ecosystem Integration. DR (R) UNAM Press of Mexico.Google Scholar
  10. Fay, C. W., R. J. Neves, and G. B. Pardue. 1983. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Mid Atlantic)—Atlantic silverside. United States Fish and Wildlife Service, Division of Biological Services, FWS/OBS-82/11.10 United States Army Corps of Engineers, TR EL-82-4. 15 p.Google Scholar
  11. Fore, P. L. andK. N. Baxter. 1972. Diel fluctuations in the catch of larval Gulf menhaden,Brevoortia patronus, at Galveston Entrance, Texas.Transaction of the American Fisheries Society 101:729–732.CrossRefGoogle Scholar
  12. Forman, W. W. 1968. The ecology of the Cyprinodontidae (Pisces) of Grand Terre Island, Louisiana. M.S. Thesis, Louisiana. State University. Baton Rouge, Louisiana. 115 p.Google Scholar
  13. Greeley, M. S. 1984. Spawning byFundulus pulvereus andAdinia xenica (Cyprinodontidae) along the Alabama Gulf coast is associated with the semilunar tidal cycles.Copeia 1984:797–800.CrossRefGoogle Scholar
  14. Greeley, M. S. andR. MacGregor. 1983. Annual and semilunar reproductive cycles of the Gulf killifish,Fundulus grandis, on the Alabama Gulf coast.Copeia 1983:711–718.CrossRefGoogle Scholar
  15. Gunter, G. 1936. Studies of the destruction of marine fish by shrimp trawlers in Louisiana.Louisiana Conservation Review 5: 18–46.Google Scholar
  16. Gunter, G. 1938. The relative number of species of marine fish on the Louisiana coast.The American Naturalist 72:77–83.CrossRefGoogle Scholar
  17. Harrington, R. W. Jr., andE. S. Harrington. 1961. Food selection among fishes invading a high subtropical salt marsh: From onset of flooding through the progress of a mosquito brood.Ecology 42:646–666.CrossRefGoogle Scholar
  18. Herke, W. H. 1971. Use of natural and semi-impounded Louisiana tidal marshes as nurseries for fishes and crustaceans. Ph.D. Dissertation. Louisiana State University, Baton Rouge, Louisiana. 242 p.Google Scholar
  19. Herke, W. H., B. D. Rogers, and E. E. Knudsen. 1984. Habits and habitats of young spotted seatrout in Louisiana marshes. Lousiana State University Agricultural Experiment Station Research Report No. 3., Baton Rouge, Lousiana. 48 p.Google Scholar
  20. Herke, W. H., E. E. Knudsen, P. A. Knudsen, andB. D. Rogers. 1992. Effects of semi-impoundment of Louisiana marsh on fish and crustacean nursery use and export.North American Journal of Fisheries Management 12:151–160.CrossRefGoogle Scholar
  21. Hettler, W. F., Jr. 1989. Nekton use of regularly-flooded salt-marsh cordgrass habitat in North Carolina, USA.Marine Ecology Progress Series 56:111–118.CrossRefGoogle Scholar
  22. Kneib, R. T. 1984. Patterns in the utilization of intertidal salt marsh by larvae and juveniles ofFundulus heteroclitus (Linnaeus) andFundulus luciae (Baird).Journal of Experimental Marine Biology and Ecology 83:41–51.CrossRefGoogle Scholar
  23. Kneib, R. T. 1986. The role ofFundulus heteroclitus in salt marsh trophic dynamics.American Zoologist 26:259–269.Google Scholar
  24. Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.CrossRefGoogle Scholar
  25. Kneib, R. T., andA. E. Stiven. 1978. Growth, reproduction, and feeding ofFundulus heteroclitus (L.) in a North Carolina salt marsh.Journal of Experimental Marine Biology and Ecology 31: 121–140.CrossRefGoogle Scholar
  26. Lassuy, D. R. 1982. Species profiles: Life histories and environmental requirements (Gulf of Mexico)—the spotted seatrout. United States Fish and Wildlife Service, Office of Biological Services. FWS/OBS-82/11.4 13 p.Google Scholar
  27. Lassuy, D. R. 1983. Species profiles: Life histories and environmental requirements (Gulf of Mexico)—Gulf Menhaden. United States Fish and Wildlife Service, Division of Biological Services, FWS/OBS-82/11.2. United States Army Corps of Engineers, TR EL-82-4. 13 p.Google Scholar
  28. Lipcius, R. N. andC. B. Subrahmanyam. 1986. Temporal factors influencing killifish abundance and recruitment in Gulf of Mexico salt marshes.Estuarine and Coastal Shelf Science 22: 101–114.CrossRefGoogle Scholar
  29. McIvor, C. C. andW. E. Odum. 1986. The flume net: A quantitative method for sampling fishes and macrocrustaceans on tidal marsh surfaces.Estuaries 9:219–224.CrossRefGoogle Scholar
  30. McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69:1341–1351.CrossRefGoogle Scholar
  31. Mercer, L. P. 1984. A biological and fisheries profile of spotted seatrout,Cynoscion nebulosus. North Carolina Department of Natural Resources and Community Development, Division of Marine Fisheries. Morehead City, North Carolina. Special Scientific Report. No. 40. 87 p.Google Scholar
  32. Minello, T. J. andR. J. Zimmerman. 1983. Fish predation on juvenile brown shrimp,Penaeus aztecus Ives: The effect of simulatedSpartina structure on predation rates.Journal of Experimental Marine Biology and Ecology 72:211–232.CrossRefGoogle Scholar
  33. Nixon, S. W. 1980. Between coastal marshes and coastal waters —A review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry, p. 437–535.In P. Hamilton and K. B. MacDonald (eds.), Estuarine and Wetland Processes. Plenum, New York.Google Scholar
  34. Norden, C. R. 1966. The seasonal distribution of fishes in Vermillion Bay, Louisiana.Wisconsin Academy of Science, Arts and Letters 55:119–137.Google Scholar
  35. Odum, W. E. andE. J. Heald. 1975. The detritus-based food web of an estuarine mangrove community, p. 265–286.In L. E. Cronin (ed.), Estuarine Research Vol. 1., Academic Press, New York.Google Scholar
  36. Perret, W. S. 1971. Cooperative Gulf of Mexico estuarine inventory and study, Louisiana: Phase IV, Biology. Louisiana Wildlife and Fisheries Commission, New Orleans, Louisiana.Google Scholar
  37. Perret, W. S., J. E. Weaver, R. O. Williams, P. L. Johansen, T. D. McIlwain, R. C. Raulerson, and W. M. Tatum. 1980. Fishery profiles of red drum and spotted seatrout. Gulf States Marine Fisheries Commission No. 6. 61 p.Google Scholar
  38. Peterson, G. W. 1986. Distribution, habitat preferences, and relative abundance of juvenile spotted seatrout and red drum in the Caminada Bay estuary, Louisiana. M.S. Thesis. Louisiana State University, Baton Rouge, Louisiana. 96 p.Google Scholar
  39. Rakocinski, C. F., D. M. Baltz, andJ. W. Fleeger. 1992. Correspondence between environmental gradients and the community structure of marsh-edge fishes in a Louisiana estuary.Marine Ecology Progress Series 80:135–148.CrossRefGoogle Scholar
  40. Rozas, L. P. 1992a. Bottomless lift net for quantitatively sampling nekton on intertidal marshes.Marine Ecology Progress Series 89:287–292.CrossRefGoogle Scholar
  41. Rozas, L. P. 1992b. Comparison of nekton habitats associated with pipeline canals and natural channels in Lousiana salt marshes.Wetlands 12:136–146.CrossRefGoogle Scholar
  42. Rozas, L. P. andM. W. LaSalle. 1990. A comparison of the diets of Gulf killifish,Fundulus grandis Baird and Girard, entering and leaving a Mississippi brackish marsh.Estuaries 13:332–336.CrossRefGoogle Scholar
  43. Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creekbanks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.CrossRefGoogle Scholar
  44. Rozas, L. P. andW. E. Odum. 1987. Use of tidal freshwater marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient.Estuaries 10:36–43.CrossRefGoogle Scholar
  45. SAS Institute Inc. 1985a. SAS Users Guide: Basics, Version 5 Edition. SAS Institute Inc., Cary, North Carolina. 1,290 p.Google Scholar
  46. SAS Institute Inc. 1985b. SAS Users Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, North Carolina. 956 p.Google Scholar
  47. SAS Institute Inc. 1985c. SAS/GRAPH Users Guide, Version 5 Edition. SAS Institute Inc., Cary, North Carolina. 596 p.Google Scholar
  48. Springer, V. G. andK. D. Woodburn. 1960. An ecological study of the fishes of the Tampa Bay area.Florida State Board of Conservation Professional Paper Series 1:1–104.Google Scholar
  49. Talbot, C. W. andK. W. Able. 1984. Composition and distribution of larval fishes in New Jersey high marshes.Estuaries 7: 434–443.CrossRefGoogle Scholar
  50. Taylor, M. H., L. DiMichele, andG. J. Leach. 1977. Egg stranding in the life cycle of the mummichog,Fundulus heteroclitus.Copeia 1977:397–399.CrossRefGoogle Scholar
  51. Taylor, M. H., G. J. Leach, L. DiMichele, W. M. Levitan, andW. F. Jacob. 1979. Lunar spawning cycle in the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979:291–297.CrossRefGoogle Scholar
  52. Thomas, J. T., R. J. Zimmerman, andT. J. Minello. 1990. Abundance patterns of juvenile blue crabs (Callinectes sapidus) in nursery habitats of two Texas bays.Bulletin of Marine Science 46:115–125.Google Scholar
  53. Thompson, B. A. and W. Forman. 1987. Nekton, Chapter 7.In W. H. Conner and J. W. Day, Jr. (eds.), The Ecology of Barataria Basin, Louisiana: An Estuarine Profile, United States Fish and Wildlife Service Biology Reports 85 (7.13). 165 p.Google Scholar
  54. Turner, R. E. 1992. Coastal wetlands and penaeid shrimp habitat, p. 97–104.In R. H. Stroud (ed.), Conservation of Coastal Fish Habitat. Proceedings of the 14th Annual Marine Recreational Fisheries Symposium. Coalition for Marine Conservation. Savannah, Georgia.Google Scholar
  55. Valiela, I., J. E. Wright, J. M. Teal, andS. B. Volkman. 1977. Growth, production, and energy transformations in the saltmarsh killifishFundulus heteroclitus.Marine Biology 40:135–144.CrossRefGoogle Scholar
  56. Wagner, P. R. 1973. Seasonal biomass, abundance, and distribution of estuarine-dependent fishes in the Caminada Bay system of Louisiana. Ph.D. Dissertation. Lousiana State University. Baton Rouge, Louisiana. 192 p.Google Scholar
  57. Weinstein, M. P. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear river, North Carolina.Fisheries Bulletin 77:339–357.Google Scholar
  58. Weinstein, M. P. andH. A. Brooks. 1983. Comparative ecology of nekton residing in a tidal creek and adjacent seagrass meadow: Community composition and structure.Marine Ecology Progress Series 12:15–27.CrossRefGoogle Scholar
  59. Weisberg, S. B. 1986. Competition and coexistence among four estuarine species ofFundulus.American Zoologist 26:249–258.Google Scholar
  60. Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichogFundulus heteroclitus. An experimental approach.Marine Biology 66:307–310.CrossRefGoogle Scholar
  61. Weisberg, S. B., R. Whalen, andV. A. Lotrich. 1981. Tidal and diurnal influence on food consumption of a salt marsh killifishFundulus heteroclitus.Marine Biology 61:243–246.CrossRefGoogle Scholar
  62. Welsh, B. L. 1975. The role of grass shrimp,Palaemonetes pugio, in a tidal marsh system.Ecology 56:513–530.CrossRefGoogle Scholar
  63. Zimmerman, R. J. 1989. An assessment of salt marsh usage by estuarine aquatic fauna at Grand Isle, Louisiana. NMFS/SEC Report to Environmental Protection Agency Region IV (Dallas). National Marine Fisheries Service Galveston Laboratory, Galveston, Texas. 27 p.Google Scholar
  64. Zimmerman, R. J. andT. J. Minello. 1984. Densities ofPenaeus aztecus, Penaeus setiferus, and other natant macrofauna in a Texas salt marsh.Estuaries 7:421–433.CrossRefGoogle Scholar
  65. Zimmerman, R. J., T. J. Minello, M. C. Castiglione, and D. L. Smith. 1990. Utilization of marsh and associated habitats along a salinity gradient in Galveston Bay. National Oceanic and Atmospheric Administration Technical Memorandum. NMFS-SEFC-250. 66 p.Google Scholar
  66. Zimmerman, R. J., T. J. Minello, andG. Zamora, Jr. 1984. Selection of vegetated habitat by brown shrimp,Penaeus aztecus, in a Galveston Bay salt marsh.Fisheries Bulletin 82:325–336.Google Scholar

Copyright information

© Estuarine Research Federation 1994

Authors and Affiliations

  • G. W. Peterson
    • 1
  • R. E. Turner
    • 1
  1. 1.Coastal Ecology Institute Center for Coastal Energy and Environmental ResearchLouisiana State UniversityBaton Rouge

Personalised recommendations