, Volume 16, Issue 4, pp 859–872 | Cite as

Zooplankton grazing in a Potomac River cyanobacteria bloom

  • K. G. Sellner
  • D. C. Brownlee
  • M. H. Bundy
  • S. G. Brownlee
  • K. R. Braun


During summer, bloom-forming cyanobacteria, including Anacystis, Aphanizomenon, and Microcystis aeruginosa, dominate tidal-fresh waters of the upper Potomac River estuary with densities exceeding 108 cells l−1. In an attempt to determine the importance of these high cyanobacteria densities to planktonic herbivory in the system, short-term grazing experiments were conducted in July and August 1987. Using size-fractionated river phytoplankton assemblages, zooplankton grazing rates were determined for dominant or subdominant planktonic microzooplankton and mesozooplankton feeding on 14C-labeled river assemblages, 14C-labeled river assemblages enriched with unlabeled cyanobacteria, and unlabeled river assemblages enriched with 14C-labeled cyanobacteria. Grazing rates were estimated for the rotifers Polyarthra remata, Hexarthra mira, Asplanchna brightwelli, Brachionus angularis, Epiphanes sp., Trichocerca similis, and the cyclopoid copepod Cyclops vernalis. Neither rotifers nor the copepod grazed heavily on Microcystis. Rotifer grazing rates on labeled cyanobacteria ranged from 4 to 1,650 nl· [individual · h]−1 while copepod rates ranged from undetectable to 135 μl · [copepod · h]−1. Grazing rates on labeled river phytoplankton assemblages were 4–100 times higher than noted for zooplankton feeding on cyanobacteria. The addition of the colonial alga to labeled river phytoplankton assemblages resulted in mixed zooplankton responses, that is, lower and higher grazing rates than observed on river assemblages with no added cyanobacteria. Total zooplankton demand for cyanobacteria and river phytoplankton assemblages was estimated for the study period July–August 1987. Rotifer plus C. vernalis herbivory would have removed 1–5% and 49%, respectively, of the standing stock of the two autotroph pools each day. Literature-derived clearance rates for Bosmina indicate, however, that herbivory by this cladoceran could increase demand to 24% and 60%, respectively, in bloom and nonbloom assemblages. These data suggest that the majority of cyanobacterial production remains ungrazed and may be transported to the lower estuary for salinity-induced aggregation and sedimentation.


Phytoplankton Clearance Rate Grazing Rate Incorporation Rate Phytoplankton Assemblage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arnold, D. E. 1971. Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of blue-green algae. Limnology and Oceanography 16:906–920.Google Scholar
  2. Bogdan, K. G., and J. J. Gilbert. 1987. Quantitative comparisons of food niches in some freshwater zooplankton. A multi-tracer-cell approach. Oecologia 72:331–340.CrossRefGoogle Scholar
  3. Bowie, G. L., W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan, S. A. Gherini, and C. E. Chamberlin. 1985. Rates, constants, and kinetics formulations in surface water quality modeling, 2nd Ed. EPA/600/3-85/040, United States Environmental Protection Agency. Athens, Georgia. 455 p.Google Scholar
  4. Clarke, N. V. 1978. The food of adult copepods from Lake Kainji, Nigeria. Freshwater Biology 8:321–326.CrossRefGoogle Scholar
  5. Cohen, R. R. H., P. V. Dresler, E. J. P. Phillips, and R. L. Cory. 1984. The effect of the asiatic clam, Corbicula fluminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29:170–180.Google Scholar
  6. Conover, R. J. 1978. Transformation of organic matter. Marine Ecology 4:221–499.Google Scholar
  7. Culver, D. A., M. M. Boucherle, D. J. Bean, and J. W. Fletcher. 1985. Biomass of freshwater crustacean zooplankton from length-weight regressions. Canadian Journal of Fish and Aquatic Sciences 42:1380–1390.CrossRefGoogle Scholar
  8. DeBernardi, R., G. Giussani, and E. L. Pedretti. 1981. The significance of blue-green algae as food for other filter feeding zooplankton: Experimental studies on Daphnia spp. fed by Microcystis aeruginosa. Verhandlungen Internationale Verein Limnologie 21:477–483.Google Scholar
  9. DeMott, W. R. 1989. Optimal foraging theory as a predictor of chemically mediated food selection by suspension-feeding copepods. Limnology and Oceanography 34:140–154.Google Scholar
  10. Edmondson, W. T. 1959. Freshwater Biology, 2nd Ed. John Wiley & Sons, Inc., New York. 1248 p.Google Scholar
  11. Fahnestiel, G. L., H. J. Carrick, and R. Iturriaga. 1991. Physiological characteristics and food-wed dynamics of Synechococcus in lakes Huron and Michigan. Limnology and Oceanography 36:219–234.CrossRefGoogle Scholar
  12. Fulton, R. S., III. 1988. Resistence to blue-green algal toxins by Bosmina longirostris. Journal of Plankton Research 10:771–778.CrossRefGoogle Scholar
  13. Fulton, R. S., III and H. W. Paerl. 1987a. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32:634–644.Google Scholar
  14. Fulton, R. S., III and H. W. Paerl. 1987b. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. Journal of Plankton Research 9: 837–855.CrossRefGoogle Scholar
  15. Fulton, R. S., III and H. W. Paerl. 1988. Zooplankton feeding selectivity for unicellular and colonial Microcystis aeruginosa. Bulletin of Marine Science 43:500–508.Google Scholar
  16. Guiset, A. 1977. Stomach contents of Asplanchna and Ploesoma. Ergebnisse der Limnologie 8:126–129.Google Scholar
  17. Hanazato, T., and M. Yasuno. 1987. Evaluation of Microcystis as food for zooplankton in a eutrophic lake. Hydrobiologia 144: 251–259.CrossRefGoogle Scholar
  18. Hernroth, L. 1983. Marine pelagic rotifers and tintinnids—Important links in the spring plankton community of the Gullmar Fjord, Sweden. Journal of Plankton Research 5:835–846.CrossRefGoogle Scholar
  19. de Infante, A., and W. Riehl. 1984. The effect of cyanophyta upon zooplankton in a eutrophic tropical lake (Lake Valencia, Venezuela). Hydrobiologia 113:293–298.CrossRefGoogle Scholar
  20. Jaworski, N. A., D. W. Lear, Jr. and O. Villa, Jr. 1972. Nutrient management in the Potomac estuary. American Society of Limnology and Oceanography Speical Symposium 1:246–273.Google Scholar
  21. Johansson, S. 1983. Annual dynamics and production of rotifers in an eutrophication gradient in the Baltic Sea. Hydrobiologia 104:335–340.CrossRefGoogle Scholar
  22. Keefe, C. W., W. R. Boynton, and W. M. Kemp. 1981. A review of phytoplankton processes in estuarine environments. University of Maryland CEES Ref. No. [UMCEES] CBL 81-193, Solomons, Maryland. 4 p.Google Scholar
  23. Kemp, W. M., and W. R. Boynton. 1992. Benthic-pelagic interactions: Nutrient and oxygen dynamics, p. 149–221. In D. E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay. Maryland Sea Grant College. College Park, Maryland.Google Scholar
  24. Lampert, W. 1981. Inhibitory and toxic effects of blue-green algae on Daphnia. Internationale Revue der gesamten Hydrobiologie 66:285–298.CrossRefGoogle Scholar
  25. Lampert, W. 1982. Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Archiv für Hydrobiologie 95:207–220.Google Scholar
  26. Lessard, E. J., and E. Swift. 1985. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Marine Biology 87:289–296.CrossRefGoogle Scholar
  27. Nizan, S., C. Dimentman, and M. Shilo. 1986. Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna. Limnology and Oceanography 31:497–502.Google Scholar
  28. Paerl, H. W. 1984. Alteration of microbial metabolic activities in association with detritus. Bulletin of Marine Science 35:393–408.Google Scholar
  29. Pourriot, R. 1977. Food and feeding habits of rotifera. Ergebnisse der Limnologie 8:243–260.Google Scholar
  30. Prescott, G. W. 1951. Algae of the Western Great Lakes Area. Otto Koeltz Publishers, Koenigstein, Germany. 977 p.Google Scholar
  31. Reynolds, C. S., G. M. H. Jaworski, H. A. Cmiech, and G. F. Leedale. 1981. On the annual cycle of the blue-green algae Microcystis aeruginosa Kutz. emend. Elenkin. Philosophical Transactions of the Royal Society of London, Series B 293:419–477.CrossRefGoogle Scholar
  32. Roman, M. R., and P. A. Rublee. 1981. A method to determine in situ zooplankton grazing rates on natural particle assemblages. Marine Biology 65:303–309.CrossRefGoogle Scholar
  33. Ruttner-Kolisko, A. 1977. Suggestions for biomass calculation of planktonic rotifers. Ergebnisse der Limnologie 8:71–76.Google Scholar
  34. Safferman, R. S., and M.-E. Morris. 1964. Control of algae with viruses. Journal of the American Waterworks Association 56: 1217–1224.Google Scholar
  35. Schindler, J. E. 1971. Food quality and zooplankton nutrition. Journal of Animal Ecology 40:589–595.CrossRefGoogle Scholar
  36. Sellner, K. G., R. V. Lacouture, and C. R. Parrish. 1988. Effects of incrasing salinity on a cyanobacteria bloom in the Potomac River estuary. Journal of Plankton Research 10:49–61.CrossRefGoogle Scholar
  37. Smayda, T. J. 1978. From phytoplankters to biomass, p. 273–279. In A. Sournia (ed.), Phytoplankton Manual. UNESCO, Paris.Google Scholar
  38. Starkweather, P. L. 1980. Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia 73:63–72.CrossRefGoogle Scholar
  39. Starkweather, P. L. 1981. Trophic relationships between the rotifer Brachionus calyciflorus and the blue-green alga Anabaena flos-aquae. Verhandlungen Internationale Verein Limnologie 21:1507–1514.Google Scholar
  40. Starkweather, P. L., and J. J. Gilbert. 1977. Feeding in the rotifer Brachionus calyciflorus. II. Effect of food density on feeding rates using Euglena gracilis and Rhodotorula glutinis. Oecologia 28:133–139.CrossRefGoogle Scholar
  41. Starkweather, P. L., and P. E. Kellar. 1983. Utilization of cyanobacteria by Brachionus calyciflorus: Anabeana flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologia 104:373–377.CrossRefGoogle Scholar
  42. Starkweather, P. L., and P. E. Kellar. 1987. Combined influences of particulate and dissolved factors in the toxicity of Microcystis aeruginosa (NRC-55-17) to the rotifer Brachionus calyciflorus. Hydrobiologia 147:375–378.CrossRefGoogle Scholar
  43. Stemberger, R. S. 1979. A guide to the rotifers of the Laurentian Great Lakes. United States Environmental Protection Agency, Report No. EPA-600/4-79-021, Cincinnati, Ohio. 186 p.Google Scholar
  44. Strickland, J. D. H. and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Bulletin 167, Ottawa, Canada. 310 p.Google Scholar
  45. Thomann, R. V., N. J. Jaworski, S. W. Nixon, H. W. Paerl, and J. L. Taft. 1985. The 1983 algal bloom in the Potomac estuary. Metropolitan Council of Governments, Washington, DC.Google Scholar
  46. Tuttle, J. H., and C. G. Gilmour. 1985. Microbial sulfate production in the Chesapeake Bay. EOS 66:1319 (Abstract).Google Scholar
  47. Walpole, R. E., and R. H. Myers. 1972. Probality and Statistics for Engineers and Scientists. Macmillan Co., New York. 506 p.Google Scholar

Copyright information

© Estuarine Research Federation 1993

Authors and Affiliations

  • K. G. Sellner
    • 1
  • D. C. Brownlee
    • 1
  • M. H. Bundy
    • 1
  • S. G. Brownlee
    • 1
  • K. R. Braun
    • 1
  1. 1.The Academy of Natural SciencesBenedict Estuarine Research LaboratoryBenedict

Personalised recommendations