Advertisement

Estuaries

, Volume 18, Issue 4, pp 579–590 | Cite as

Hydroperiod and its influence on nekton use of the salt marsh: A pulsing ecosystem

  • Lawrence P. Rozas
Article

Abstract

The salt marsh surface is not a homogeneous environment. Rather, it contains a mix of different microhabitats, which vary in elevation, microtopography, and location within the estuarine system. These attributes act in concert with astronomical tides and meteorological and climatological events and result in pulses of tidal flooding. Marsh hydroperiod, the pattern of flooding events, not only controls nekton access to marsh surface habitats directly but may also mediate habitat exploitation through its influence on other factors, such as prey abundance or vegetation stem density. The relative importance of factors affecting marsh hydroperiod differ between the southeast Atlantic and northern Gulf of Mexico coasts. Astronomical tidal forcing is the primary determinant of hydroperiod in Atlantic Coast marshes, whereas predictable tides are often overridden by meteorological events in Gulf Coast marshes. In addition, other factors influencing coastal water levels have a proportionately greater effect on the Gulf Coast. The relatively unpredictable timing of marsh flooding along the Gulf Coast does not seem to limit habitat utilization. Some of the highest densities of nekton reported from salt marshes are from Gulf Coast marshes that are undergoing gradual submergence and fragmentation caused by an accelerated rise in relative sea level. Additional studies of habitat utilization are needed, especially on the Pacific and Atlantic coasts. Investigations should include regional comparisons of similar microhabitats using identical quantitative sampling methods. Controlled field experiments are also needed to elucidate the mechanisms that affect the habitat function of salt marshes.

Keywords

Salt Marsh Atlantic Coast Gulf Coast Cold Front Tidal Marsh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baltz, D. M., C. Rakocinski, andJ. W. Fleeger. 1993. Microhabitat use by marsh-edge fishes in a Louisiana estuary.Environmental Biology of Fishes 36:109–126.CrossRefGoogle Scholar
  2. Baumann, R. H., J. W. Day, andC. A. Miller. 1984. Mississippi deltaic wetland survival: Sedimentation versus coastal submergence.Science 224:1093–1095.CrossRefGoogle Scholar
  3. Bertness, M. D. 1984. Ribbed mussels andSpartina alterniflora production in a New England salt marsh.Ecology 65:1794–1807.CrossRefGoogle Scholar
  4. Bishop, T. D. andC. T. Hackney. 1987. A comparative study of the mollusc communities of two oligohaline intertidal marshes: Spatial and temporal distributions of their abundance and biomass.Estuaries 10:141–152.CrossRefGoogle Scholar
  5. Boon, J. D., III. 1975. Tidal discharge asymmetry in a salt marsh drainage system.Limnology and Oceanography 20:71–80.Google Scholar
  6. Borey, R. B., P. A. Harcombe, andF. M. Fisher. 1983. Water and organic carbon fluxes from an irregularly flooded brackish marsh on the upper Texas coast, U.S.A.Estuarine, Coastal and Shelf Science 16:379–402.CrossRefGoogle Scholar
  7. Cammen, L. M. 1976. Macroinvertebrate colonization ofSpartina marshes artificially established on dredge spoil.Estuarine, Coastal and Marine Science 4:357–372.CrossRefGoogle Scholar
  8. Capehart, A. A. andC. T. Hackney. 1989. The potential role of roots and rhizomes in structuring saltmarsh benthic communities.Estuaries 12:119–122.CrossRefGoogle Scholar
  9. Chabreck, R. H. andR. G. Linscombe. 1982. Changes in vegetation types in Louisiana coastal marshes over a 10-year period.Proceedings of the Louisiana Academy of Sciences 45:98–102.Google Scholar
  10. Chabreck, R. H. andA. W. Palmisano. 1973. The effects of Hurricane Camille on the marshes of the Mississippi River delta.Ecology 54:1118–1123.CrossRefGoogle Scholar
  11. Chamberlain, R. H. andR. A. Barnhart. 1994. Early use by fish of a mitigation salt marsh, Humbolt Bay, California.Estuaries 16:769–783.CrossRefGoogle Scholar
  12. Chao, S.-Y. andL. J. Pietrafesa. 1980. The subtidal response of sea level to atmospheric forcing in the Carolina Capes.Journal of Physical Oceanography 10:1246–1255.CrossRefGoogle Scholar
  13. Childers, D. L., J. W. Day, Jr., andR. A. Muller. 1990. Relating climatological forcing to coastal water levels in Louisiana estuaries and the potential importance of El Niño-southern oscillation events.Climate Research 1:31–42.CrossRefGoogle Scholar
  14. Collins, L. M., J. N. Collins, andL. B. Leopold. 1987. Geomorphic processes of an estuarine marsh: Preliminary results and hypotheses, p. 1049–1072.In V. Gardiner (ed.), International Geomorphology 1986 Part I. John Wiley & Sons, Ltd., London.Google Scholar
  15. Dardeau, M. R., R. F. Modlin, W. W. Schroeder, andJ. P. Stout. 1992. Estuaries, p. 615–744.In C. T. Hackney, S. M. Adams, and W. H. Martin (eds.), Biodiversity of the Southeastern United States: Aquatic Communities. John Wiley & Sons, Inc., New York.Google Scholar
  16. de Jong, D. J., Z. de Jong, andJ. P. M. Mulder. 1994. Changes in area, geomorphology and sediment nature of salt marshes in the Oosterschelde estuary (SW Netherlands) due to tidal changes.Hydrobiologia 282/283:303–316.Google Scholar
  17. de Leeuw, J., L. P. Apon, P. M. J. Herman, W. de Munck, andW. G. Beeftink. 1994. The response of salt marsh vegetation to tidal reduction caused by the Oosterschelde storm-surge barrier.Hydrobiologia 282/283:335–353.Google Scholar
  18. Dunbar, J. B., L. D. Britsch, and E. B. Kemp, III. 1992. Land loss rates: Report 3, Louisiana coastal plain. United States Army Corps of Engineers, Waterways Experiment Station, Technical Report GL-90-2, Vicksburg, Mississippi.Google Scholar
  19. Eiser, W. C. 1984. Sheet flow as a component of total water flux in an estuarine marsh. M.S. Thesis, University of South Carolina, Columbia, South Carolina.Google Scholar
  20. Fell, P. E., N. C. Olmstead, E. Carlson, W. Jacob, D. Hitchcock, andG. Silber. 1982. Distribution and abundance of macroinvertebrates on certain Connecticut tidal marshes, with emphasis on dominant molluscs.Estuaries 5:234–239.CrossRefGoogle Scholar
  21. Fortuin, A. W., H. Hummel, A. Meijboom, andL. de Wolf. 1989. Expected effects of the use of the Oosterschelde storm surge barrier on the survival of the intertidal fauna. Part 2—The effects of protracted tidal cycles.Marine Environmental Research 27:229–239.CrossRefGoogle Scholar
  22. Gibson, R. N. 1988. Patterns of movement of intertidal fishes, p. 55–63.In G. Chelazzi and M. Vannini (eds.). Behavioral Adaptation to Intertidal Life. Plenum Publishing Corp., New York.Google Scholar
  23. Giese, G. L., H. B. Wilder, and G. G. Parker, Jr. 1979. Hydrology of major estuaries and sounds of North Carolina. United States Geological Survey Water Resources Investigations 79-46, Raleigh, North Carolina.Google Scholar
  24. Gornitz, V., S. Lebedeff, andJ. E. Hansen. 1982. Global sea level trend in the past century.Science 215:1611–1614.CrossRefGoogle Scholar
  25. Gosselink, J. G. andR. H. Baumann. 1980. Wetland inventories: Wetland loss along the United States coast.Geomorphology, Suppl. [N.S.] 34:173–187.Google Scholar
  26. Greeley, M. S., Jr. andR. MacGregor, III. 1983. Annual and semilunar reproductive cycles of the Gulf killifish,Fundulus grandis, on the Alabama Gulf coast.Copeia 1983:711–718.CrossRefGoogle Scholar
  27. Hackney, C. T. andG. F. Yelverton. 1990. Effects of human activities and sea level rise on wetland ecosystems in the Cape Fear River Estuary, North Carolina, USA, p. 55–61.In D. F. Whigham, R. Good, and Y. Kivet (eds.), Wetland Ecology and Management: Case Studies. Kluwer Academic Publishers, The Netherlands.Google Scholar
  28. Heard, R. W. 1982. Guide to common tidal marsh invertebrates of the northeastern Gulf of Mexico. Mississippi-Alabama Sea Grant Consortium MASGP-79-004.Google Scholar
  29. Hettler, W. F. 1989. Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA.Marine Ecology Progress Series 56:111–118.CrossRefGoogle Scholar
  30. Holdahl, S. R. andN. L. Morrison. 1974. Regional investigations of vertical coastal movements in the U.S., using precise relevelings and mareograph data.Tectonophysics 23:373–390.CrossRefGoogle Scholar
  31. Hummel, H., A. W. Fortuin, R. H. Bogaards, A. Meijboom, andL. de Wolf. 1994. The effects of prolonged emersion and submersion by tidal manipulation on marine macrobenthos.Hydrobiologia 282/283:219–234.Google Scholar
  32. Hummel, H., A. W. Fortuin, L. de Wolf, andA. Meijboom. 1988. Mortality of intertidal benthic animals after a period of prolonged exposure.Journal of Experimental Marine Biology and Ecology 121:247–254.CrossRefGoogle Scholar
  33. Kjerfve, B., J. E. Greer, andR. L. Crout. 1978. Low-frequency response of estuarine sea level to non-local forcing, p. 497–513In M. L. Wiley (ed.), Estuarine Interaction. Academic Press, New York.Google Scholar
  34. Kneib, R. T. 1976. Feeding, reproduction, reproduction, growth and movements of killifishes on a North Carolina salt marsh. M.A. Thesis, University of North Carolina, Chapel Hill, North Carolina.Google Scholar
  35. Kneib, R. T. 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: Causes and questions.Estuaries 7:392–412.CrossRefGoogle Scholar
  36. Kneib, R. T. 1988. Testing for indirect effects of predation in an intertidal soft-bottom community.Ecology 69:1795–1805.CrossRefGoogle Scholar
  37. Kneib, R. T. 1991. Flume weir for quantitative collection of nekton from vegetated intertidal habitats.Marine Ecology Progress Series 75:29–38.CrossRefGoogle Scholar
  38. Kneib, R. T. 1992. Population dynamics of the tanaidHargeria rapax (Crustacea: Peracarida) in a tidal marsh.Marine Biology 113:437–445.CrossRefGoogle Scholar
  39. Kneib, R. T. 1993. Growth and mortality in successive cohorts of fish larvae within an estuarine nursery.Marine Ecology Progress Series 94:115–127.CrossRefGoogle Scholar
  40. Kneib, R. T. andA. E. Stiven. 1982. Benthic invertebrate responses to size and density manipulation of the common mummichog,Fundulus heteroclitus, in an intertidal salt marsh.Ecology 63:1518–1532.CrossRefGoogle Scholar
  41. Kneib, R. T., andS. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation.Marine Ecology Progress Series 106:227–238.CrossRefGoogle Scholar
  42. LaSalle, M. W. andL. P. Rozas. 1991. Comparing benthic macrofaunal assemblages of creekbank beds of the spikerushEleocharis parvula (R & S) Link and adjacent unvegetated areas in a Mississippi brackish marsh.Wetlands 11:229–244.Google Scholar
  43. Latham, P. J., L. G. Pearlstine, andW. M. Kitchens. 1994. Species association changes across a gradient of freshwater, oligohaline, and mesohaline tidal marshes along the lower Savannah River.Wetlands 14:174–183.Google Scholar
  44. Lin, J. 1989. Influence of location in a salt marsh on survivorship of ribbed mussels.Marine Ecology Progress Series 56:105–110.CrossRefGoogle Scholar
  45. Llewellyn, D. W. andG. P. Shaffer. 1993. Marsh restoration in the presence of intense herbivory: The role ofJusticia lanceolata (Chapm.) Small.Wetlands 13:176–184.Google Scholar
  46. Lynch, J. J., T. O’Neil, andD. W. Lay. 1947. Management significance of damage by geese and muskrats of Gulf coast marshes.Journal of Wildlife Management 11:50–76.CrossRefGoogle Scholar
  47. Marmer, H. A. 1954. Tides and sea level in the Gulf of Mexico.Fishery Bulletin 55:101–118.Google Scholar
  48. Marmer, H. A. 1977. Tidal datum planes. National Oceanic and Atmospheric Administration, National Ocean Survey, Special Publication No. 135, Revised 1951 Edition, Rockville, Maryland.Google Scholar
  49. McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69:1341–1351.CrossRefGoogle Scholar
  50. McKee, K. L. andW. H. Patrick, Jr. 1988. The relationship of smooth cordgress (Spartina alterniflora) to tidal datums: A review.Estuaries 11:143–151.CrossRefGoogle Scholar
  51. Meade, R. H. andK. O. Emery. 1971. Sea level as affected by river runoff, eastern United States.Science 173:425–428.CrossRefGoogle Scholar
  52. Mendelssohn, I. A. andK. L. McKee. 1988.Spartina alterniflora die-back in Louisiana: Time course investigations of soil waterlogging effects.Journal of Ecology 76:509–521.CrossRefGoogle Scholar
  53. Mendelssohn, I. A. andE. D. Seneca. 1980. The influence of soil drainage on the growth of salt marsh cordgrassSpartina alterniflora in North Carolina.Estuarine, Coastal and Marine Science 11:27–40.CrossRefGoogle Scholar
  54. Minello, T. J., J. W. Webb, R. J. Zimmerman, R. B. Wooten, J. L. Martinez, T. J. Baumer, and M. C. Pattillo 1991. Habitat availability and utilization by benthos and nekton in Hall’s Lake and West Galveston Bay. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-SEFC-275. Washington D.C.Google Scholar
  55. Minello, T. J. andR. J. Zimmerman. 1983. Fish predation on juvenile brown shrimp,Penaeus aztecus Ives: The effect of simulatedSpartina structure on predation, rates.Journal of Experimental Marine Biology and Ecology 72:211–231.CrossRefGoogle Scholar
  56. Minello, T. J. andR. J. Zimmerman. 1991. The role of estuarine habitats in regulating growth and survival of juvenile penaeid shrimp, p. 1–16.In P. DeLoach, W. J. Dougherty, and M. A. Davidson (eds.). Frontiers of shrimp research, Elsevier Science Publishers B. V., Amsterdam, The Netherlands.Google Scholar
  57. Minello, T. J. andR. J. Zimmerman. 1992. Utilization of natural and transplanted Texas salt marshes by fish and decapod crustaceans.Marine Ecology Progress Series 90:273–285.CrossRefGoogle Scholar
  58. Minello, T. J., R. J. Zimmerman, andE. X. Martinez. 1989. Mortality of young brown shrimpPenaeus aztecus in estuarine nurseries.Transactions of the American Fisheries Society 118:693–708.CrossRefGoogle Scholar
  59. Minello, T. J., R. J. Zimmerman, andR. Medina. 1994. The importance of edge for natant macrofauna in a created salt marsh.Wetlands 14:184–198.Google Scholar
  60. Mitsch, W. J. andJ. G. Gosselink. 1986. Wetlands. Van Nostrand Reinhold Company, Inc. New York.Google Scholar
  61. Morris, J. T., B. Kjerfve, andJ. M. Dean. 1990. Dependence of estuarine productivity on anomalies in mean sea level.Limnology and Oceanography 35:926–930.CrossRefGoogle Scholar
  62. Moy, L. D. andL. A. Levin. 1991. AreSpartina marshes a replaceable resource? A functional approach to evaluation of marsh creation efforts.Estuaries 14:1–16.CrossRefGoogle Scholar
  63. Murphy, S. C. 1991. The ecology of estuarine fishes in southern. Maine high salt marshes; access corridors and movement patterns. M. S. Thesis, University of Massachusetts, Amherst, Massachusetts.Google Scholar
  64. Odum, W. E. 1989. A comparison of microtopography of the marsh surface in tidal freshwater and salt marshes. Abstract, Tenth Biennial International Estuarine Research Conference, Baltimore, Maryland.Google Scholar
  65. Orlando, S. P., Jr.,L. P. Rozas, G. H. Ward, andC. J. Klein. 1991. Analysis of salinity structure and stability for Texas estuaries. Strategic Assessment Branch, National Ocean Survey, National Oceanic and Atmospheric Administration. Rockville, Maryland.Google Scholar
  66. Osenga, G. A. andB. C. Coull. 1983.Spartina alterniflora Loisel root structure and meiofaunal abundance.Journal of Experimental Marine Biology and Ecology 67:221–225.CrossRefGoogle Scholar
  67. Osgood, D. T. andJ. C. Zieman. 1993. Spatial and temporal patterns of substrate physicochemical parameters in differentaged barrier island marshes.Estuarine, Coastal and Shelf Science 37:421–436.CrossRefGoogle Scholar
  68. Pattullo, J., W. Munk, R. Revelle andE. Strong 1955. The seasonal oscillation in sea level.Journal of Marine Research 14: 88–156.Google Scholar
  69. Penland, S. andK. E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988.Journal of Coastal Research 6:323–342.Google Scholar
  70. Peterson, G. W. andR. E. Turner. 1994. The value of salt marsh edge vs interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh.Estuaries 17:235–262.CrossRefGoogle Scholar
  71. Pietrafesa, L. J. andG. S. Janowitz. 1988. Physical oceanographic processes affecting larval transport around and through North Carolina inlets.American Fisheries Symposium 3:34–50.Google Scholar
  72. Provost, M. W. 1976. Tidal datum planes circumscribing salt marshes.Bulletin of Marine Science 26:558–563.Google Scholar
  73. Rader, D. N. 1984. Salt-marsh benthic invertebrates: Small-scale patterns of distribution and abundance.Estuaries 7:413–420.CrossRefGoogle Scholar
  74. Reed, D. J. 1989. The role of salt marsh erosion in barrier island evolution and deterioration in coastal Louisiana.Transactions of the Gulf Coast Association of the Geological Society 39: 501–510.Google Scholar
  75. Reed, D. J. andD. R. Cahoon. 1992. The relationship between marsh surface topography, hydroperiod, and growth ofSpartina alterniflora in a deteriorating Louisiana salt marsh.Journal of Coastal Research 8:77–87.Google Scholar
  76. Robins, C. R., G. C. Ray, J. Douglass andR. Freund. 1986. A Field Guide to Atlantic Coast Fishes of North America. Houghton Mifflin Company, Boston, Massachusetts.Google Scholar
  77. Rozas, L. P. 1993. Nekton use of salt marshes of the southeast region of the United States, p. 528–537.In O. T. Magoon, W. S. Wilson, H. Converse, and L. T. Tobin (eds.), Proceedings of the Eighth Symposium on Coastal and Ocean Management. Coastal Zone ’93 Conference. American Society of Civil Engineers, New York.Google Scholar
  78. Rozas, L. P. andW. E. Odum. 1987. Use of tidal freshwater marshes by fishes and macrofaunal crustaceans along a marsh stream-order gradient.Estuaries 10:36–43.CrossRefGoogle Scholar
  79. Rozas, L. P. andD. J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence.Marine Ecology Progress Series 96:147–157.CrossRefGoogle Scholar
  80. Sasser, C. E. 1977. Distribution of vegetation in Louisiana coastal marshes as response to tidal flooding. M.S. Thesis, Louisiana State University, Baton Rouge, Louisiana.Google Scholar
  81. Sasser, C. E., M. D. Dozier, J. G. Gosselink, andJ. M. Hill. 1986. Spatial and temporal changes in Louisiana’s Barataria Basin marshes, 1945–1980.Environmental Management 10:671–680.CrossRefGoogle Scholar
  82. Schindler, D. E., B. M. Johnson, N. A. MacKey, N. Bouwes, andJ. F. Kitchell. 1994. Crab: snail size-structured interactions and salt marsh predation gradients.Oecologia 97:49–61.CrossRefGoogle Scholar
  83. Simpson, R. H., and M. B. Lawrence. 1971. Atlantic hurricane frequencies along the U.S. coastline. National Oceanic and Atmospheric Administration Technical Memorandum, NWS SR-58, Ft. Worth Texas.Google Scholar
  84. Smith, N. P. 1974. Intracoastal tides of Corpus Christi Bay.Contributions in Marine Science 18:205–219.Google Scholar
  85. Smith, N. P. 1978. Long-period, estuarine-shelf exchanges in response to meteorological forcing, p. 147–159.In J. C. J. Nihoul (ed.), Hydrodynamics of Estuaries and Fjords. Elsevier Scientific Publishing Co., Amsterdam, The Netherlands.CrossRefGoogle Scholar
  86. Smith, N. P. 1979. Meteorological forcing of coastal waters by the inverse barometer effect.Estuarine, Coastal and Marine Science 8:149–156.CrossRefGoogle Scholar
  87. Smith, T. J., III andW. E. Odum. 1981. The effects of grazing by snow geese on coastal salt marshes.Ecology 62:98–106.CrossRefGoogle Scholar
  88. Stevenson, J. C., L. G. Ward, andM. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level rise, p. 241–259.In D. A. Wolfe (ed.), Estuarine Variability. Academic Press, Orlando, Florida.Google Scholar
  89. Sturges, W. andJ. P. Blaha. 1976. A western boundary current in the Gulf of Mexico.Science 192:367–369.CrossRefGoogle Scholar
  90. Swenson, E. M. andW. S. Chuang. 1983. Tidal and subtidal water volume exchange in an estuarine system.Estuarine, Coastal and Shelf Science 16:229–240.CrossRefGoogle Scholar
  91. Taylor, M. H., G. J. Leach, L. DiMichele, W. M. Levitan, andW. F. Jacob. 1979. Lunar spawning cycle in the mummichog,Fundulus heteroclitus (Pisces: Cyprinodontidae).Copeia 1979: 291–297.CrossRefGoogle Scholar
  92. Teal, J. M. 1958. Distribution of fiddler crabs in Georgia salt marshes.Ecology 39:185–193.CrossRefGoogle Scholar
  93. Teal, J. M. andJ. W. Kanwisher. 1966. Gas transport in the marsh grassSpartina alterniflora.Journal of Experimental Botany 17:355–361.CrossRefGoogle Scholar
  94. Van Dolah, R. F. 1978. Factors regulating the distribution and population dynamics of the amphipod (Gammarus palustris) in an intertidal salt marsh community.Ecological Monographs 48:191–217.CrossRefGoogle Scholar
  95. Vince, S., I. Valiela, N. Backus andJ. M. Teal. 1976. Predation by the salt marsh killifishFundulus heteroclitus (L.) in relation to prey size and habitat structure: Consequences for prey distribution and abundance.Journal of Experimental Marine Biology and Ecology 23:255–266.CrossRefGoogle Scholar
  96. Wang, D.-P. andA. J. Elliot. 1978. Non-tidal variability in the Chesapeake Bay and Potomac River: Evidence for non-local forcing.Journal of Physical Oceanography 8:225–232.CrossRefGoogle Scholar
  97. Ward, G. H. Jr. 1980. Hydrography and circulation processes of Gulf estuaries, p. 183–215.In P. Hamilton and K. B. Macdonald (eds.) Estuaries and Wetland Processes with Emphasis on Modeling. Plenum Press, New York.Google Scholar
  98. Ward, G. H., Jr,N. E. Armstrong, andThe Matagorda Bay Project Teams. 1980. Matagorda Bay, Texas: Its hydrography, ecology and fishery resources. United States Fish and Wildlife Service, Biological Services Program, Washington, D. C.. FWS/OBS-81/52.Google Scholar
  99. Weisberg, S. B. andV. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichogFundulus heteroclitus. An experimental approach.Marine Biology 66:307–310.CrossRefGoogle Scholar
  100. West, D. L. andA. H. Williams. 1986. Predation byCallinectes sapidus (Rathbun) withinSpartina, alterniflora (Loisel) marshes.Journal of Experimental Marine Biology and Ecology 100:75–95.CrossRefGoogle Scholar
  101. White, W. A., T. A. Tremblay, E. G. Wermund, and L. R. Handley. 1993. Trends and status of wetland and aquatic habitats in the Galveston Bay system, Texas. The Galveston Bay National Estuary Program, Publication GBNEP-31. Webster, Texas.Google Scholar
  102. Williams, A. B.. 1984. Shrimps, lobsters, and crabs of the Atlantic Coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington, D.C.Google Scholar
  103. Zimmerman, R. J. andT. J. Minello. 1984. Densities ofPenaeus aztecus, Penaeus setiferus, and other natant macrofauna in a Texas salt marsh.Estuaries 7:421–433.CrossRefGoogle Scholar
  104. Zimmerman, R. J., T. J. Minello, E. F. Klima, and. J. M. Nance. 1991. Effects of accelerated sea-level rise on coastal secondary production, p. 110–124In H. S. Bolten and O. T. Magoon (eds.), Coastal Wetlands Coastal Zone ’91 Conference, American Society of Civil Engineers, New York.Google Scholar

Copyright information

© Estuarine Research Federation 1995

Authors and Affiliations

  • Lawrence P. Rozas
    • 1
  1. 1.National Marine Fisheries Service Southeast Fisheries Science CenterNational Oceanic and Atmospheric AdministrationGalveston

Personalised recommendations