Advertisement

Estuaries

, Volume 20, Issue 2, pp 416–429 | Cite as

Nutrients limiting the algal growth potential (AGP) in the Po River plume and an adjacent area, Northwest Adriatic Sea: Enrichment bioassays with the test algaeNitzschia closterium andThalassiosira pseudonana

  • Serge Y. Maestrini
  • Brigitte R. Berland
  • Martine Bréret
  • Christian Béchemin
  • Roberto Poletti
  • Attilio Rinaldi
Article

Abstract

From April 1993 to March 1994, 135 samples were collected at two sites in the coastal Adriatic Sea, both near (14.5 km) and far (63 km) from the Po River delta. The nutrient(s) limiting algal growth potential (AGP) were estimated by bioassay usingNitzshia closterium (local isolate) andThalassiosira pseudonama (strain 3-H). Estimates were also made by comparing the nutrient molar ratios, ΣN:P and ΣN:Si (whereΣN=NO3 +NO2 +NH4 ++urea), to the Redfield Ratio (16∶1, 1∶1). According to the bioassay results, phosphorus was the sole nutrient limiting AGP in 2% of the samples and was the most limiting nutrient in 69% of the samples; nitrogen was sole limiting nutrient in 18% of the samples. In 11% of samples, nitrogen and phosphorus were equally co-limiting. Omission of phosphorus from spike enrichments allowed, on average, only a 1.6-fold increase in biomass over that in the unenriched controls. Similar omission of nitrogen allowed a 4-fold increase, while silicon, iron, and micronutrients resulted in 14-fold, 18-fold, and >20-fold increases, respectively. In most of the samples, ΣN:P was much greater than 16, indicating a marked phosphorus deficiency, while ΣN:Si values suggested that silicon was the third most limiting nutrient in 35% of samples. In water collected for from the Po delta, the yield ofN. closterium was not limited by any nutrients other than the three major ones: P, N and Si. In these same waters,T. pseudonana was also potentially limited by iron and, to a lesser extent, by vitamins. The role of iron varied. In samples collected near the Po delta, iron acted as the third most limiting nutrient forN. closterium in June and September; it appeared 29 times out of 78 on the list of potentially limiting nutrients forT. pseudonana, including 5 times as the most limiting. Altogether, comparison with published results suggests that the roles of iron and silicon in AGP limitation have increased during the past three decades, and could become even more important if eutrophication in the Adriatic Sea continues to increase.

Keywords

Phytoplankton Marine Ecology Progress Series Thalassiosira Pseudonana Test Alga Algal Growth Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Agius, C. andV. Jaccarini. 1982. The effects of nitrate and phosphorus enrichments on the phytoplankton from Marsaxlokk Bay, Malta (Central Mediterranean).Hydrobiologia 87:89–96.CrossRefGoogle Scholar
  2. Aid, F., G. Gaumer, andF. L. Samson-Kechacha. 1981. Rôles de l’azote et du phosphore dans la limitation de la production primaire des eaux de la baie d’Alger.Comptes Rendus de l'Académie des Sciences de Paris, Sciences de la vie 293:435–437.Google Scholar
  3. Barber, R. T. andJ. H. Ryther. 1969. Organic chelators: Factors affecting primary production in the Cromwell current upwelling.Journal of Experimental Marine Biology and Ecology 3: 191–199.CrossRefGoogle Scholar
  4. Berland, B., D. Bonin, B. Coste, S. Maestrini, andH. J. Minas. 1973. Influence des conditions hivernales sur les productions phyto-et zooplanctoniques en Méditerranée Nord-Occidentale. III. Caractérisation des eaux de surface au moyen de cultures d'algues.Marine Biology 23:267–274.CrossRefGoogle Scholar
  5. Berland, B. R., D. J. Bonin, andS. Y. Maestrini. 1978. Facteurs limitant la production primaire des eaux oligotrophes d’une aire côtière méditerranéenne (Calanque d’En-Vau, Marsille).Internationale Revue der Gesamten Hydrobiologie 63:501–531.CrossRefGoogle Scholar
  6. Berland, B. R., D. J. Bonin, andS. Y. Maestrini. 1980. Azote ou phosphore? Considérations sur le “paradoxe nutritionel” de la Mer Méditerranée.Oceanologica Acta 3:135–142.Google Scholar
  7. Berland, B. R., Z. P. Burlakova, L. V. Georgieva, M. Izmestieva, V. I. Kholodov, D. K. Krupatkina, S. Y. Maestrini, and V. E. Zaika. 1984. Phytoplancton estival de la Mer du Levant, biomasse et facteurs limitants. Production et relations trophiques dans les écosystèmes marins, p. 61–83, 2e coll. Franco-Soviétique. YALTA. IFREMERGoogle Scholar
  8. Berland, B. R., S. Y. Maestrini, Z. P. Burlakova, L. Georgieva, V. Y. Kholodov, andD. K. Krupatkina. 1990. Limitation de la croissance algale dans les eaux ultra-oligotrophes de la Mer du Levant (Méditerranée Orientale).Memorie di Biologia marina e di Oceanografia XVIII:5–28.Google Scholar
  9. Béthoux, J.-P., P. Morin, C. Madec, andB. Gentili. 1992. Phosphorus and nitrogen behaviour in the Mediterranean Sea.Deep-Sea Research 39:1641–1654.CrossRefGoogle Scholar
  10. Béthoux, J. P. andG. Copin-Montégut. 1988. Phosphorus and nitrogen in the Mediterranean Sea: Specificities and forecasting.Oceanogica Acta 9:75–78.Google Scholar
  11. Bishop, J. K. B, R. W. Collier, D. R. Ketten, andJ. M. Edmond. 1977. The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean.Deep-Sea Research 24:511–548CrossRefGoogle Scholar
  12. Boni, L., L. Mancini, A. Milandri, R. Poletti, M. Pompei, andR. Viviani. 1992. First cases of diorrhoetic shellfish poisoning in the Northern Adriatic Sea, p. 419–426.In R. A. Vollenweider, R. Marchetti, and R. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the International Conference of Bologna, Italy, 21–24 March 1990. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  13. Boni, L., M. Pompei, andM. Reti. 1986. Maree colorate e fioriture algali lungo le costa dell'Emilia-Romagna dal 1982 al 1985, con particolare riguardo alla comparsa diProtogonyaulax tamarensis.Nova Thalassia 8:237–245.Google Scholar
  14. Boni, L., B. M. Manuzzi, M. Reti, andD. Tacconi. 1989. Ricerche sul potenziale trofico delle acque costiere dell’Emilia-Romagna mediante saggi algali.Oebalia XV-1:375–382.Google Scholar
  15. Bonin, D. J., M. C. Bonin, andT. Berman. 1989. Mise en évidence expérimentale des facteurs nutritifs limitants de la production du micro-nanoplancton et de l'ultraplancton dans une eau côtière de la Méditerranée orientale (Haïfa, Israël).Aquatic Sciences 51:129–152.CrossRefGoogle Scholar
  16. Bonin, D. J., M. R. Droop, S. Y. Maestrini, andM. C. Bonin. 1986. Physiological features of six micro-algae to be used as indicators of seawater quality.Cryptogamie, Algologie 7:23–83.Google Scholar
  17. Bonin, D. J., J. W. Leftley, and S. Y. Maestrini. 1981. The role of hormones and vitamins in species succesion of phytoplankton, p. 310–322.In T. Platt (ed.), Physiological Bases of Phytoplankton Ecology;Canadian Bulletin of Fisheries and Aquatic Sciences Bulletin 210.Google Scholar
  18. Bonin, D. J. and S. Y. Maestrini. 1981. Importance of organic nutrients for phytoplankton growth in natural environments: Implications for algal species succession, p. 279–291.In T. Platt (ed.), Physiological Bases of Phytoplankton Ecology;Canadian Bulletin of Fisheries and Aquatic Sciences, Bulletin 210.Google Scholar
  19. Brand, L. E., R. R. L. Guillard, andL. S. Murphy. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates.Journal of Plankton Research 3:193–201.CrossRefGoogle Scholar
  20. Cabrini M., S. Fonda Umani, andG. Honsell. 1992. Mucilaginous aggregates in the Gulf of Trieste (Northern Adriatic Sea): Analysis of the phytoplanctonic communities in the period June–August 1989, p. 557–568.In R. A. Vollenweider, R. Marchetti, and R. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the International Conference of Bologna, Italy, 21–24 March 1990. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  21. Cabrini M., M. Milani, G. Honsell, andS. Fonda Umani. 1987–88. The phytoplankton in a station in the Gulf of Trieste from March 1986 to September 1988: Data report.Nova Thalassia 9:11–51.Google Scholar
  22. Caraco, N., A. Tamse, O. Boutros, andI. Valiela. 1987. Nutrient limitation of phytoplankton growth in brackish coastal ponds.Canadian Journal of Fisheries and Aquatic Sciences 44:473–476.CrossRefGoogle Scholar
  23. Chavez, F. P., K. R. Buck, K. H. Coale, J. H. Martin, G. R. DiTullio, N. A. Welschmeyer, A. C. Jacobson, andR. T. Barber. 1991. Growth rate, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton.Limnology and Oceanography 36:1816–1833.Google Scholar
  24. Chiaudani, G., R. Marchetti, andM. Vighi. 1980. Eutrophication in Emilia-Romagna coastal waters (north Adriatic Sea, Italy): A case history.Progress Water Technics 12:185–192.Google Scholar
  25. Chiaudani, G. andM. Vighi. 1982. Multistep approach to identification of limiting nutrients in Northern Adriatic eutrophicated coastal waters.Water Research 16:1161–1166.CrossRefGoogle Scholar
  26. Conley, D. J., C. L. Schelske, andE. F. Stoermer. 1993. Modification of the biogeochemical cycle of silica with eutrophication.Marine Ecology Progress Series 101:179–192.CrossRefGoogle Scholar
  27. Coste, B. 1971. Les sels nutritifs entre la Sardaigne, la Sicile et la Tunisie.Cahiers Océanographiques 23:40–83.Google Scholar
  28. Coste, B., P. Le Corre, H. J. Minas, and P. Morin. 1988. Les éléments nutritifs dans le Bassin de la Méditerranée. Bilan des échanges avec l'Océan Atlantique à Gibraltar.Oceanologica Acta N0 SP “Océanographie pélagique méditerranéenne”, ed. by H.J. Minas and P. Nival, 87–94.Google Scholar
  29. Daneri, G., D. W. Crawford, andD. A. Purdie. 1992. Algal blooms in coastal waters: A comparison between two adaptable members of the phytoplankton,Phaeocystis sp. andMesodinium rubrum, p. 879–890.In R. A. Vollenweider, R. Marchetti, and R. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the Internal Conference. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  30. Degobbis, D. 1989. Increased eutrophication of the Northern Adriatic Sea. Second Act.Marine Pollution Bulletin 20:452–457.CrossRefGoogle Scholar
  31. Degobbis, D. 1990. A stochiometric model of nutrient cycling in the northern Adriatic Sea and its relation to regeneration proceses.Marine Chemistry 29:235–253.CrossRefGoogle Scholar
  32. Decobbis, D., S. Fonda-Umani, P. Franco, A. Malej, R. Precali, andN. Smodlaka. 1995. Changes in the northern Adriatic ecossystem and the hypertrophic appearance of gelatinous aggregates.The Science of the Total Environment 165: 43–58.CrossRefGoogle Scholar
  33. Degobbis, D. andM. Gilmartin. 1990. Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea.Oceanologica Acta 13:31–45.Google Scholar
  34. Devèze, L. 1959. Cycle biologique des eaux et écologie des populations planctoniques.Recueil des Travaux de la Station Marine d’Endoume, Marseille 25:1–220.Google Scholar
  35. Dortch, Q. andT. E. Whitledge. 1992. Does nitrogen or silicon limit phytoplankton production in the Mississipi River plume and nearby regions?Continental Shelf Research 12:1293–1309.CrossRefGoogle Scholar
  36. Droop, M. R. 1974. The nutrient status of algal cells in continuous culture.Journal of the Marine Biological Association of the United Kingdom 54:825–855.CrossRefGoogle Scholar
  37. Dugdale, R. C. 1967. Nutrient limitation in the sea: Dynamics, identification and significance.Limnology and Oceanography 12: 685–695.Google Scholar
  38. Dugdale, R. C. andJ. J. Goering. 1967. Uptake of new and regnerated forms of nitrogen in primary productivity.Limnology and Oceanography 12:196–206.Google Scholar
  39. Egge, J. K. andD. L. Aksnes. 1992. Silicate as regulating nutrient in phytoplankton competition.Marine Ecology Progress Series 83:281–289.CrossRefGoogle Scholar
  40. Eppley, R. W., E. H. Renger, E. L. Venrick, andM. M. Mullin. 1973. A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean.Limnology and Oceanography 18:534–551.Google Scholar
  41. Eppley, R. W., J. N. Rogers, andJ. J. McCarthy. 1969. Halfsaturation constants for uptake of nitrate and ammonium by marine phytoplankton.Limnology and Oceanography 14: 912–920.Google Scholar
  42. Fisher, T. R., E. R. Peele, J. W. Ammerman, andL. W. Harding, Jr. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay.Marine Ecology Progress Series 82:51–63.CrossRefGoogle Scholar
  43. Fleming, R. H. 1940. The composition of plankton and units for reporting populations and production, Proceedings 6th Pacific Scientific Congress, California, (1939), 3: 535–540.Google Scholar
  44. Fonda Umani, S., E., Ghirardelli, andM. Specchi. 1989. Gliepisodi di “mare sporco” nell’Adriatico dal 1729 ai giorni nostri. Regione Autonoma del Friuli-Venezia Giulia. Publicazione della Direzione regionale dell’Ambiente, Trieste.Google Scholar
  45. Franco, P., G. Socal andF. Bianchi. 1979. Nutrienti e biomassa fitoplanctonica nell’Adriatico settentrionale. Crociere 1978, p. 47–59.In Convegno Scientifico Nazionale P.F. e Fondi Marini. Arti Grafiche E. Cossidente, and F. Ili Publish, Roma.Google Scholar
  46. Franco, P., G. Socal, andF. Bianchi. 1982. Fitoplancton nell’Adriatico settentrionale. Crociere 1978.Naturalista siciliano S. IV, VI (Suppl.) 1: 29–38.Google Scholar
  47. Frey, B. E., andL. F. Small. 1980. Effects of micro-nutrients and major nutrients on natural phytoplankton populations.Journal of Plankton Research 2:1–22.CrossRefGoogle Scholar
  48. Friligos, N. 1988. Nutrient enrichment and circulation of water masses in the Pagassitikos Gulf (Aegean Sea).Oceanologica Acta 9:111–122.Google Scholar
  49. Garber, J. H. 1984. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston.Estuarine, Coastal and Shelf Science 18: 685–702.CrossRefGoogle Scholar
  50. Glooschenko, W. A. andH. Curl, Jr. 1971. Influence of nutrient enrichment on photosynthesis and assimilation ratios in natural North Pacific phytoplankton communities.Journal of the Fisheries Research Board of Canada 28:790–793.Google Scholar
  51. Glover, H. 1978. Iron in Maine coastal waters; seasonal variations and its apparent correlation with a dinoflagellate bloom.Limnology and Oceanography 23:534–537.Google Scholar
  52. Gran, H. H. 1933. Studies on the biology and chemistry of the Gulf of Maine. II. Distribution of phytoplankton in August 1932.Biological Bulletin 64: 159–181.CrossRefGoogle Scholar
  53. Granéli, E., K. Wallström, U. Larsson, W. Granéli, andR. Elmgren. 1990. Nutrient limitation of primary production in the Baltic Sea area.Ambio 19:142–151.Google Scholar
  54. Groupe Médiprod. 1974. Résultats de la campagne Médiprod III (13 Juin–2 Juillet 1972).Publication CNEXO, Série Résultats des Campagnes à la Mer 8:40 p.Google Scholar
  55. Harrison, P. J., M. H. Hu, Y. P. Yang, andX. Lu. 1990. Phosphate limitation in estuarine and costal waters of China.Journal of Experimental Marine Biology and Ecology 140:79–87.CrossRefGoogle Scholar
  56. Hecky, R. E. andP. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment.Limnology and Oceanography 33:796–822.Google Scholar
  57. Honsell, G. andM. Cabrini. 1990. Il fitoplancton durante il “mare sporco” dell’agosto 1988 nel golfo di Trieste (Adriatico settentrionale).Bolletino della Società Adriatica di Scienze LXXII 5:1–14.Google Scholar
  58. Honsell, G., L. Boni, M. Cabrini, andM. Pompei. 1992. Toxic or potentially toxic dinoflagellates from the Northern Adriatic Sea, p. 107–114.In R. A. Vollenweider, R. Marchetti, and R. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the International Conference. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  59. Howarth, R. W. 1988. Nutrient limitation of net primary productivity in marine systems.Annual Revue in Ecology and Systematics 19:89–110.CrossRefGoogle Scholar
  60. Justic, D., N. N. Rabalais, andR.E. Turner. 1995a. Stoichiometric nutrient balance and origin of coastal eutrophication.Marine Pollution Bulletin 30: 41–46.CrossRefGoogle Scholar
  61. Justic, D., N. N. Rabalais, R. E. Turner, andQ. Dortch. 1995b. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences.Estuarine, Coastal and Shelf Science 40:339–356.CrossRefGoogle Scholar
  62. Kaltenböck, E. andG. J. Herndl. 1992. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. IV. Dissolved nutrients and the autotrophic community associated with marine snow.Marine Ecology Progress Series 87:147–159.Google Scholar
  63. Krom, M. D., N. Kress, andS. Brenner. 1991. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea.Limnology and Oceanography 36:424–432.Google Scholar
  64. Le Jehan, S. andP. Treguer. 1983. Uptake and regeneration Si/N/P ratios in the Indian sector of the Southern Ocean: Originality of the biological cycle of silicon.Polar Biology 2: 127–136.CrossRefGoogle Scholar
  65. Levasseur, M. E., P. J. Harrison, B. R. Heimdal, andJ. C. Therriault. 1990 Simultaneous nitrogen and silicate deficiency of a plytoplankton community in a coastal jet-front.Marine Biology 104:329–338.CrossRefGoogle Scholar
  66. Maestrini, S. Y. andM. G. Kossut 1981. In situ cell depletion of some marine algae enclosed in dialysis sacks and their use for the determination of nutrient-limiting growth in Ligurian coastal waters (Mediterranean Sea).Journal of Experimental Marine Biology and Ecology 50:1–19.CrossRefGoogle Scholar
  67. Maestrini, S. Y. and D. J. Bonin. 1981. Competition among phytoplankton based on inorganic macronutrients, p. 264–278.In T. Platt (ed.), Physiological Based of Phytoplankton Ecology,Canadian Bulletin of Fisheries and Aquatic Science Bulletin 210.Google Scholar
  68. Maestrini, S. Y., D. J. Bonin, andM. R. Droop. 1984a. Phytoplankton as indicators of seawater quality: Bioassay approaches and protocols. p. 71–132.In E. Shubert (ed.), Algae as Ecological Indicators. Academic Press Inc. London England.Google Scholar
  69. Maestrini, S. Y., M. R. Droop, andD. J. Bonin. 1984b. Phytoplankton as indicators of seawater quality: prospects, p. 133–138.In E. Shubert (ed.), Algae as Ecological Indicators. Academic Press Inc., London, England.Google Scholar
  70. Martin, J. H. andS. E. Fitzwater. 1988. Iron deficiency limits phytoplakton growth in the north-east pacific subarctic.Nature (London) 331:341–343.CrossRefGoogle Scholar
  71. Martin, J. H. andR. M. Gordon. 1988. Northeast Pacific iron distributions in relation to phytoplankton productivity.Deep-Sea Research 35:177–196.CrossRefGoogle Scholar
  72. McGill, D. A. 1965. The relative supplies of phosphate, nitrate and silicate in the Mediterranean Sea.Rapports et Procès-verbaux des Réunions.Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 18: 737–744.Google Scholar
  73. McGill, D. A. 1969. A budget for dissolved nutrient salts in the Mediterranean Sea.Cahiers Océanographiques 21: 543–554.Google Scholar
  74. Menzel, D. W. andJ. H. Ryther. 1960. The annual cycle of primary production in the Sargasso Sea off Bermuda.Deep-Sea Research 6: 351–367.Google Scholar
  75. Mignon, C., G. Copin-Montegut, L. Elegant, andJ. Morelli. 1989. Etude de l’apport atmosphérique en sels nutritifs au milieu côtier méditerranéen et implications biogéochimiques.Oceanologica Acta 12:187–191.Google Scholar
  76. Millero, F. J., D. Means, andC. Miller. 1978. The densities of Mediterranean Sea waters.Deep-Sea Research 26:563–569.Google Scholar
  77. Mingazzini, M., A. Rinaldi, andG. Montanari. 1992. Multilevel nutrient enrichment bioassays on Northern Adriatic coastal waters, p.115–131.In R. A. Vollenweider, R. Marchetti, and R. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the International Conference of Bologna. Italy, 21–24 March 1990. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  78. Molin, D., E. Guidoboni, andA. Lodovisi. 1992. Mucilage and the phenomena of algae in the history of the Adriatic: Periodization and the anthropic context (17th–20th centuries), p. 511–524.In R. A. Vollenweider, R. Marchetti, and R. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the International Conference of Bologna, Italy 21–24 March 1990. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  79. Morel, F. M. M., R. J. M. Hudson, andN. M. Price. 1991. Limitation of productivity by trace metals in the sea.Limnology and Oceanography 36:1742–1755.Google Scholar
  80. Obernosterer, I. andG. J. Herndl. 1995. Phytoplankton extracellular release and bacterial growth: Dependence on the inorganic N∶P ratio.Marine Ecology Progress Series 116:247–257.CrossRefGoogle Scholar
  81. Officer, C. B. andJ. H. Ryther. 1980. The possible importance of silicon in marine eutrophication.Marine Ecology Progress Series 3:83–91.CrossRefGoogle Scholar
  82. Oswald, W. J. andC. G. Golueke. 1966. Eutrophication trends in the United States—A problem?Journal of the Water Pollution Control Federation 38:964–975.Google Scholar
  83. Owens, N. J. P.. 1990. Marine eutrophication: The role of nutrient inputs, p. 171–192.In H. Barth and L. Fegan (eds.), Water Pollution Research Report 16, Eutrophication-related Phenomena in the Adriatic Sea and in Other Mediterranean Coastal Zones. Commission of the European Communities, Bruxelles, Belgium.Google Scholar
  84. Paerl, H. W. 1985. Enhancement of marine primary production by nitrogen-enriched acid rain.Nature (London) 316:747–749.CrossRefGoogle Scholar
  85. Pagnotta, R. andA. Puddu. 1990. Marine eutrophication in Italy: An overview of the problems, p. 115–126.In H. Barth and L. Fegan (eds.), Water Pollution Research Report 16, Eutrophication-related Phenomena in the Adriatic Sea and in Other Mediterranean Coastal Zones. Commission of the European Communities, Bruxelles, Belgium.Google Scholar
  86. Pennock, J. R. andJ. H. Sharp. 1994. Temporal alternation between light-and nutrient limitation of phytoplankton production in a coastal plain estuary.Marine Ecology Progress Series 111:275–288.CrossRefGoogle Scholar
  87. Pojed, I. andS. Kveder. 1977a. Investigation of nutrient limitation of phytoplankton production in the Northern Adriatic by enrichment experiments.Thalassia Jugoslavica 13: 13–24.Google Scholar
  88. Pojed, I. andS. Kveder. 1977b. Investigation of nutrient limitation of phytoplankton production in Northern Adriatic.Rapports et Procès-verbaux des Réunions. Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée 24:47–48.Google Scholar
  89. Provasoli, L. 1963. Organic regulation of phytoplankton fertility p. 165–219.In M. N. Hill (ed.), The Sea, Ideas and Observations on Progress in the Study of the Seas-Vol. 2. J. Wiley and Sons, New York.Google Scholar
  90. Provini, A., G. Crosa, andR. Marchetti. 1992. Nutrient export from the Po and Adige river basins over the last 20 years, p. 291–313.In R. A. Vollenweider, R. Marchetti and R. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the International Conference of Bologna, Italy, 21–24 March 1990. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  91. Ragueneau, O. 1994. La dynamique du phytoplancton en écosystèmes côtiers macrotidaux: Couplage avec l’hydrodynamisme et le cycle biogéochimique du silicium. Thèse de Doctorat, Université de Bretagne Occidentale, France.Google Scholar
  92. Ragueneau, O., E. de Blas Varela, P. Tréguer, B. Quéguiner, andY. Del Amo. 1994. Phytoplankton dynamics in relation to the biogeochemical cycle of silicon in a coastal ecosystem of western Europe.Marine Ecology Progress Series 106:157–172.CrossRefGoogle Scholar
  93. Redfield, A. C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton, p. 176–192.In R. J. Daniel (ed.), James Johnstone Memorial Volume. The University Press, Liverpool, England.Google Scholar
  94. Revelante, N. andM. Gilmartin. 1976. The effect of Po River discharge on phytoplankton dynamics in the Northern Adriatic Sea.Marine Biology 34:259–271.CrossRefGoogle Scholar
  95. Revelante, N. andM. Gilmartin. 1977. The effects of northern italian rivers and eastern mediterranean ingressions on the phytoplankton of the Adriatic Sea.Hydrobiologia 56:229–240.CrossRefGoogle Scholar
  96. Riley, G. A. 1951. Oxygen, phosphate and nitrate in the Atlantic Ocean.Bulletin of Bingham Oceanography Collection 13:1–126.Google Scholar
  97. Rinaldi, A. andG. Montanari. 1988. Eutrophication in the Emilia-Romagna coastal waters in 1984–1985.Annals of the New York Academy of Sciences 534:959–977.CrossRefGoogle Scholar
  98. Rinaldi, A., R. A. Vollenweider, G. Montanari, C. R. Ferrari, andA. Ghetti. 1995. Mucilages in Italian seas. The Adriatic and Tyrrhenian seas, 1988–1991.The Science of the Total Environment 165:165–183.CrossRefGoogle Scholar
  99. Rudek, J., H. W. Paerl, M. A. Mallin, andP. W. Bates. 1991. Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina.Marine Ecology Progress Series 75:133–142.Google Scholar
  100. Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment.Science 171:1008–1013.CrossRefGoogle Scholar
  101. Sakshaug, E., K. Andresen, S. Myklestad, andY. Olsen. 1983. Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition.Journal of Plankton Research 5:175–196.CrossRefGoogle Scholar
  102. Saccini-Cicatelli, M. 1972. Les variations des sels d’azote et de phosphore dans les eaux côtières de l’Adriatique occidentale au cours d’une année.Commission Internationale pour l’Exploration Scientifique de la Mer Méditéranée, Rapports et P.V. des Réunions 20:677–678.Google Scholar
  103. Schelske, C. L. andE. F. Stoermer. 1972. Phosphorus, silica, and eutrophication of Lake Michigan, p. 157–171.In G. E. Likens (ed.), Nutrients and Eutrophications: The Limiting-Nutrient Controversy. American Society of Limnology and Oceanography. Lawrence, Kansas.Google Scholar
  104. Smayda, T. J. 1974. Bioassay of the growth potential of the surface water of lower Narragansett Bay over an annual cycle using the diatomThalassiosira pseudonana (oceanic clone, 13–1),Limnology and Oceanography 19:889–901.Google Scholar
  105. Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic, p.29–40.In E. Granéli, B. Sundström, L. Edler, and Anderson D (eds.), Toxic Marine Phytoplankton. Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton. Elsevier Science Publishers, New York.Google Scholar
  106. Smith, S. V.. 1984. Phosphorus versus nitrogen limitation in the marine environment.Limnology and Oceanography 29:1149–1160.CrossRefGoogle Scholar
  107. Sommer, U. 1986. Phytoplankton competition along a gradient of dilution rates.Oecologia 68:503–506.CrossRefGoogle Scholar
  108. Stefanon, A. and A. Boldrin. 1982. The oxygen crisis of the Northern Adriatic Sea waters in late fall 1977, and its effects on benthic communities, p. 167–175, Proceedings Sixth Symposium, Confédération mondiale des Activités subacquatiques, ParisGoogle Scholar
  109. Thingstad, T. F. andF. Rassoulzadegan. 1995. Nutrient limitations, microbial food webs, and “biological C-pumps”: Suggested interactions in a P-limited Mediterranean.Marine Ecology Progress Series 117:299–306.CrossRefGoogle Scholar
  110. Thomas, W. H. 1979. Anomalous nutrient-chlorophyll interrelationships in the offshore eastern tropical Pacific Ocean.Journal of Marine Research 37:327–335.Google Scholar
  111. Tilman, D., S. S. Kilham, andP. Kilham. 1982. Phytoplankton community ecology: The role of limiting ressources.Annual Review of Ecology and Systematics 13:349–372.CrossRefGoogle Scholar
  112. Tranter, D. J. andB. S. Newell. 1963. Esrichment experiments in the Indian Ocean.Deep-Sea Research 10:1–9.Google Scholar
  113. Vilicic, D. 1989. Phytoplankton population density and volume as indicators of eutrophication in the eastern part of the Adriatic Sea.Hydrobiologica 174:117–132.Google Scholar
  114. Vilicic, D. andL. Stojanoski. 1987. Phytoplankton response to concentration of nutrients in the central and southern Adriatic Sea.Acta adriatica 28:73–84.Google Scholar
  115. Vollenweider, R. A., A. Rinaldi, andG. Montanari. 1992. Eutrophication, structure and dynamics of a marine coastal system: Results of ten-year monitoring along the Emilia-Romagna coast (Northwest Adriatic Sea), p. 63–106.In R. A. Vollenweider, R. Marchetti and R. P. Viviani (eds.), Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Proceedings of the International Conference of Bologna. Italy, 21–24 March 1990. Elsevier Science Publishers, Amsterdam, Netherlands.Google Scholar
  116. Vukadin, I. and L. Stojanoski. 1974. C∶N∶Si∶P ratio in the waters of the middle and south adriatic. Proceedings of the XXIV Congrès-Assemblée Plémière de Monaco.Google Scholar
  117. Vukadin, I. andL. Stojanoski. 1976. C∶N∶Si∶P ratio in the waters of the middle and south adriatic.Commission Internationale pour l’Exploration Scientifique de la Mer Méditérranée, Rapports et Procès Verbaux des Réunions 23:41–43.Google Scholar
  118. Wetzel, R. G. 1965. Nutritional aspects of algal productivity in marl lakes with particular reference to enrichment bioassays and their interpretation.Memorie del Istito Italiano di Idrobiologia 18:137–157.Google Scholar
  119. Wheeler, P. A., B. B. North, andG. C. Stephens. 1974. Amino-acid uptake by marine phytoplankters.Limnology and Oceanography 19:249–259.Google Scholar
  120. Williams, P. J. Leb. 1993. On the definition of plankton production terms.ICES Marine Science Symposia 197:9–19.Google Scholar
  121. Yentsch, C. S. andD. M. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence.Deep-Sea Research 28:455–465.Google Scholar
  122. Yilmaz, A., D. Ediger, O. Bastürk, andS. Tugrul. 1994. Phytoplankton fluorescence and deep chlorophyll maxima in the Northeastern Mediterrancean.Oceanologica Acta 17:69–77.Google Scholar

Copyright information

© Estuarine Research Federation 1997

Authors and Affiliations

  • Serge Y. Maestrini
    • 1
  • Brigitte R. Berland
    • 2
  • Martine Bréret
    • 1
  • Christian Béchemin
    • 1
  • Roberto Poletti
    • 3
  • Attilio Rinaldi
    • 3
  1. 1.Centre de Recherche en Ecologie Marine et Aquaculture de L’Houmeau (CNRS-IFREMER)L’HoumeauFrance
  2. 2.Station Marine d’Endoume Chemin de la Batterie des LionsCentre d’Océanologie Université Aix-Marseille IIMarseilleFrance
  3. 3.Centro Ricerche MarineU.O. Batello Oceanografico “Daphne” Viale Vespucci 2CesenaticoItaly

Personalised recommendations