, Volume 20, Issue 2, pp 253–261 | Cite as

Prehistoric nutrient inputs and productivity in Narragansett Bay

  • Scott W. Nixon


Calculations by others of the preindustrial deposition of inorganic nitrogen from the atmosphere in the area of Narragansett Bay compared with recent measurements suggest that this flux has increased almost 15 times over natural background. On the basis of modern studies of the export of nitrogen and phosphorus from temperate forests, the prehistoric watershed also probably contributed very little reactive N or P to the bay. New information from undisturbed old-growth forests suggests that most of the N that was exported from the watershed was probably associated with refractory dissolved organic matter and thus contributed little to the fertility of the bay. The largest source of reactive dissolved inorganic nitrogen (DIN) and phosphorus (DIP) for Narragansett Bay under prehistoric conditions was the coastal ocean water entrained in the bay in estuarine circulation. The total input of DIN to this estuary has increased about five-fold and the input of total DIP has approximately doubled as a result of human activities. Recent ecosystem-level experiments using large (13 m3, 5 m deep) mesocosms designed as living models of Narragansett Bay showed that the primary production of phytoplankton in the bay is limited by the supply of DIN and that annual phytoplankton production is strongly correlated with the rate of input of DIN. The relationship between DIN input and annual phytoplankton production in the mesocosms is consistent with observations published by others working in 10 different natural marine systems, and a functional regression of the field and experimental data provides a tool to calculate the rate of prehistoric phytoplankton production that would have been associated with the prehistoric DIN input estimates. The result of this calculation suggests that phytoplankton production in the bay has approximately doubled (from about 130 g C m−2 yr−1 to 290 g C m−2 yr−1 for a baywide average) since the time of European contact. It also seems likely that seagrasses and macroalgae once made a much larger contribution to total system production than they do today.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ågren, G. I. andE. Bosatta. 1988. Nitrogen saturation of terrestrial ecosystems.Environmental Pollution 54:185–197.CrossRefGoogle Scholar
  2. Bernstein, D. J. 1993. Prehistoric Subistence on the Southern New England Coast: The Record from Narragansett Bay. Academic Press, Inc. California.Google Scholar
  3. Bidwell, P. W. andJ. I. Falconer. 1941. History of Agriculture in the Northern United States 1620–1860. Peter Smith, New York. (Reprinted with the permission of the Carnegie Institution of Washington.).Google Scholar
  4. Bosch, J. M. andJ. D. Hewlett. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration.Journal of Hydrology 55:3–23.CrossRefGoogle Scholar
  5. Bricker-Urso, S., S. W. Nixon, J. K. Cochran, D. J. Hirschberg, andC. Hunt. 1989. Accretion rates and sediment accumulation in Rhode Island salt marshes.Estuaries 12:300–317.CrossRefGoogle Scholar
  6. Brush, G. 1984. Stratigraphic evidence of eutrophication in an estuary.Water Resources Research 20:531–541.CrossRefGoogle Scholar
  7. Corbin, J. 1989. Recent and historical accumulation of trace metal contaminants in the sediment of Narragansett Bay, Rhode Island. M.S. Thesis, University of Rhode Island. Narragansett, Rhode Island.Google Scholar
  8. Cronon, W. 1983. Changes in the Land: Indians, Colonists, and the Ecology of New England. Hill and Wang, New York.Google Scholar
  9. Csanady, G. T. 1990. Physical basis of coastal productivity: The SEEP and MASAR experiment.EOS 71:1060–1065.Google Scholar
  10. Day, G. M. 1953. The Indian as an ecological factor in the northeastern forest.Ecology 34:329–346.CrossRefGoogle Scholar
  11. Dentener, F. J. andP. J. Crutzen. 1994. A three-dimensional model of the global ammonia cycle.Journal of Atmospheric Chemistry 19:331–369.CrossRefGoogle Scholar
  12. Eppley, R. W. 1989. New production: History, methods, problems, 85–97.In W. H. Berger, V. S. Smetacek, and G. Wefer (eds.), Productivity of the Ocean: Present and Past. John Wiley and Sons, Limited, New York.Google Scholar
  13. Eppley, R. W. andB. J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean.Nature 282:677–680.CrossRefGoogle Scholar
  14. Fraher, J. 1991. Atmospheric wet and dry deposition of fixed nitrogen to Narragansett Bay. M. S. thesis, University of Rhode Island, Narragansett, Rhode Island.Google Scholar
  15. Froelich, P. N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnology and Oceanography 33:649–668.CrossRefGoogle Scholar
  16. Furnas, M. J., G. L. Hitchcock andT. J. Smayda. 1976. Nutrient phytoplankton relationships in Narragansett Bay during the 1974 summer bloom, p. 118–134.In M. L. Wiley (ed.), Estuarine Processes: Uses, Stresses and Adaptations to the Estuary, Vol. 1. Academic Press, New York.Google Scholar
  17. Galloway, J. N., W. H. Schlesinger, H. Levy II,A. Michaels, andJ. L. Schnoor. 1995. Nitrogen fixation: Anthrogenic enhancement-environmental response.Global Biogeochemical Cycles 9:235–252.CrossRefGoogle Scholar
  18. Graham, W. F. 1977. Atmospheric pathways of the phosphorus cycle. Ph.D. Dissertation, University of Rhode Island, Narragansett, Rhode Island.Google Scholar
  19. Guillén, O. andR. Calienes. 1981. Upwelling off Chimbote, p. 312–316.In F. A. Richards (ed.), Coastal Upwelling. Coastal and Estuarine Sciences, 1, American Geophysical Union, Washington, D.C.Google Scholar
  20. Harper, R. M. 1918. Changes in the forest area of New England in three centuries.Journal of Forestry 16:442–452.Google Scholar
  21. Hedin, L. O., J. J. Armesto, andA. H. Johnson. 1995. Patterns of nutrient loss from unpolluted, old-growth temperature forests: Evaluation of biogeochemical theory.Ecology 76:493.CrossRefGoogle Scholar
  22. Houghton, R. W., P. C. Smith, andR. O. Fournier. 1978. A simple model for cross-shelf mixing on the Scotian Shelf.Journal of the Fisheries Research Board of Canada 35:414–421.Google Scholar
  23. Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, J. A. Downing, R. Elmgren, N. Caraco, andK. Lajtha. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  24. Iselin, C. O’D. 1939. Some physical factors which may influence the productivity of New England’s coastal waters.Journal of Marine Research 2:75–85.Google Scholar
  25. Jenkins, W. J. 1988. Nitrate flux into the eutrophic zone near Bermuda.Nature 331:521–523.CrossRefGoogle Scholar
  26. Jones, D. S., M. A. Arhur, andD. J. Allard. 1989. Sclerochronological records of temperature and growth from shells ofMercenaria mercenaria from Narragansett Bay, Rhode Island.Marine Biology 102:225–234.CrossRefGoogle Scholar
  27. Keller, A. 1988. Estimating phytoplankton productivity from light availability and biomass in the MERL mesocosms and Narragansett Bay.Marine Ecology Progress Series 45:159–168.CrossRefGoogle Scholar
  28. Laane, R. W. P. M., G. Groeneveld, A. DeVries, J. Van Bennekom, andS. Sydow. 1993. Nutrients (P, N, Si) in the Channel and the Dover Strait: Seasonal and year-to-year variation and fluxes to the North Sea.Oceanological Acta 16:607–616.Google Scholar
  29. Levy, H., II andW. J. Moxim. 1989. Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion.Tellus 41B:256–271.CrossRefGoogle Scholar
  30. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton, andN. M. Johnson. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York.Google Scholar
  31. Lohrenz, S. E., G. A. Knauer, V. L. Asper, A. F. Michaels, andA. H. Knap. 1992. Seasonal and interannual variability in primary production and particle flux in the northwestern Sargasso Sea: United States JGOFS Bermuda Atlantic Time-series Study.Deep-Sea Research 39:1373–1391.CrossRefGoogle Scholar
  32. Milliman, J. D. andJ. P. M. Syvitski. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers.The Journal of Geology 100:525–544.CrossRefGoogle Scholar
  33. Mills, E. L. andR. O. Fournier 1979. Fish production and the marine ecosystem of the Scotian Shelf, eastern Canada.Marine Biology 54:101–108.CrossRefGoogle Scholar
  34. Naiman, R. J., J. M. Melillo, andJ. E. Hobbie. 1986. Ecosystem alteration of Boreal forest streams by beaver (Castor canadensis).Ecology 67:1254–1269.CrossRefGoogle Scholar
  35. Nixon, S. W. 1992. Quantifying the relationship between nitrogen input and the productivity of marine ecosystems, p. 57–83.In M. Takahashi, K. Nakata, and T. R. Parsons (eds.), Proceedings of Advanced Marine Technology Conference (AMTEC), Volume 5, Tokyo, Japan.Google Scholar
  36. Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns.Ophelia 41:199–219.Google Scholar
  37. Nixon, S. W., J. W. Ammerman, L. P. Atkinson, V. M. Berounsky, G. Billen, W. C. Boicourt, W. R. Boynton, T. M. Church, D. M. DiToro, R. Elmgren, J. H. Garberg, A. E. Giblin, R. A. Jahnke, N. J. P. Owens, M. E. Q. Pilson, andS. P. Seitzinger. 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean.Biogeochemistry 35:141–180.CrossRefGoogle Scholar
  38. Nixon, S. W., S. L. Granger, andB. L. Nowicki. 1995. An assessment of the annual mass balance of carbon, nitrogen, and phosphorus in Narragansett Bay.Biogeochemistry 31:15–61.CrossRefGoogle Scholar
  39. Nixon, S. W., S. L. Granger, D. I. Taylor, P. W. Johnson, andB. A. Buckley. 1994. Subtidal volume fluxes, nutrient inputs and the Brown Tide—An alternate hypothesis.Estuarine, Coastal and Shelf Science 39:303–312.CrossRefGoogle Scholar
  40. Nixon, S. W., C. D. Hunt, andB. L. Nowicki. 1986a. The retention of nutrients (C, N, P), heavy metals (Mn, Cd, Pb, Cu), and petroleum hydrocarbons in Narraganset Bay, p. 99–122.In J. M. Martin and P. Lasserre (ed.), Biogeochemical Processes at the Land-Sea Boundary. Elsevier Press, Amsterdam.CrossRefGoogle Scholar
  41. Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986b. Nutrients and the productivity of estuarine and coastal marine ecosystems.Journal of the Limnological Society of Southern Africa 12:43–71.Google Scholar
  42. O’Reilly, J. E., C. Evans-Zetlin, andD. A. Busch. 1987. Primary production, p. 220–233.In R. H. Backus and D. W. Bourne (eds.) Georges Bank. MIT Press Cambridge, Massachusetts.Google Scholar
  43. Officer, C. B. andD. R. Kester. 1991. On estimating the nonadvective tidal exchanges and advective gravitational circulation exchanges in an estuary.Estuarine, Coastal and Shelf Science 32:99–103.CrossRefGoogle Scholar
  44. Oviatt, C. A., B. Buckley, andS. W. Nixon. 1981. Annual phytoplankton metabolism in Narragansett Bay calculated from survey field measurements and microcosm observations.Estuarines 4:167–175.CrossRefGoogle Scholar
  45. Oviatt, C. A., P. Doering, B. Nowicki, L. Reed, J. Cole, andJ. Frithsen. 1995. An ecosystem level experiment on nutrient limitation in temperate coastal marine environment.Marine Ecology Progress Series 116:171–179.CrossRefGoogle Scholar
  46. Oviatt, C. A., A. A. Keller, P. A. Sampou, andL. L. Beatty. 1986. Patterns of productivity during eutrophication: A mesocosm experiment.Marine Ecology Progress Series 28:69–80.CrossRefGoogle Scholar
  47. Oviatt, C. A., P. Lane, F. French III, andP. Donaghay. 1989. Phytoplankton species and abundance in response to eutrophication in coastal marine mesocosms.Journal of Plankton Research 11:1223–1244.CrossRefGoogle Scholar
  48. Pilson, M. E. Q. 1985. On the residence time of water in Narragansett Bay.Estuaries 8:2–14.CrossRefGoogle Scholar
  49. Platt, T., M. Lewis, andR. Geider. 1984. Thermodynamics of the pelagic ecosystem: Elementary closure conditions for biological production in the open ocean, p. 49–84.In M. J. R. Fasham (ed.) Flows of Energy and Materials in Marine Ecosystems: Theory and Practice. Plenum Press, New York.Google Scholar
  50. Platt, T., A. Prakash, andB. Brown, 1972. Phytoplankton nutrients and flushing of inlets on the coast of Nova Seahia.Le Naturalists Canadian 99:253–261.Google Scholar
  51. Pritchard, D. W. 1952. Salinity distribution and circulation in the Chesapeake Bay estuarine system.Journal of Marine Research 11:106–123.Google Scholar
  52. Riley, G. A. 1967. Mathematical model of nutrient conditions in coastal waters.Bulletin of the Bingham Oceanography Collection 19:72–80.Google Scholar
  53. Rönner, U.. 1985. Nitrogen transformations in the Baltic proper: Denitrification counteracts eutrophication.AMBIO 14: 134–138.Google Scholar
  54. Seitzinger, S. P. andA. E. Ciblin. 1996. Estimating denitrification in North Atlantic continental shelf sediments.Biogeochemistry 35:235–259.CrossRefGoogle Scholar
  55. Smith, S. V. 1991. Stoichiometry of C∶N∶P fluxes in shallow-water marine ecosystems, p. 259–286.In J. Cole, G. Lovett, and S. Findlay (eds.), Comparative Analyses of Ecosystems—Patterns, Mechanisms, and Theories. Springer-Verlag, New York.Google Scholar
  56. Sollins, P., C. C. Grier, F. M. McCorison, K. Cromack, Jr.,R. Fogel, andR. L. Fredriksen. 1980. The internal element cycles of an old-growth douglas-fir ecosystem in western Oregon.Ecological Monographs 50:261–285.CrossRefGoogle Scholar
  57. Sutcliffe, W. H., Jr. 1972. Some relations of land drainage, nutrients, particulate material, and fish catch in two eastern Canadian bays.Journal of the Fisheries Research Board of Canada 29:357–362.Google Scholar
  58. Swank, W. T. andJ. B. Waide 1988. Characterization of baseline precipitation and stream chemistry and nutrient budgets for control watersheds, p. 57–79.In W. T. Swank and D. A. Crossley, Jr. (eds.) Forest Hydrology and Ecology at Coweeta. Ecological Studies 66. Springer-Verlag, New York.Google Scholar
  59. Tupas, L., F. Santiago-Mandujano, D. Hebel, E. Firing, F. Bingham, R. Lukas, andD. Karl 1994. Hawaii Ocean Time-series Data Report 5 1993. SOEST Technical Report 94-5, University of Hawaii, Honolulu, Hawaii.Google Scholar
  60. Tupas, L., F. Santiaco-Mandujano, D. Hebel, R. Lukas, D. Karl, andE. Firing. 1993. Hawaii Ocean Time-series Data Report 4 1992. SOEST Technical Report 93-14, University of Hawaii, Honolulu, Hawaii.Google Scholar
  61. Verity, P. G., T. N. Lee, J. A. Yoder, G. A. Paffenhofer, J. O. Blanton, and C. R. Alexander 1993. Chapter 3, Outer Shelf processes, p. 45–74.In D. W. Menzel (ed.), Ocean Processes: United States Southeast Continental Shelf. United States Department of Energy, Office of Scientific and Technical Information, 11674.Google Scholar
  62. Walsh, J. J., T. E. Whitledge, W. E. Esaias, R. L. Smith, S. A. Huntsman, H. Santander, andB. R. de Mendiola. 1980. The spawning habitat of the Peruvian anchovyEngraulis ringens.Deep-Sea Research 27:1–27.CrossRefGoogle Scholar
  63. Walsh, J. J., T. E. Whitledge, J. E. O’Reilly, W. C. Phoel, andA. F. Draxler. 1987. Nitrogen cycling on Georges Bank and the New York Shelf: A comparison between well-mixed and seasonally stratified waters. p. 234–246.In R. H. Backus (ed.), Georges Bank, MIT Press, Cambridge, Massachusetts.Google Scholar
  64. Wiseberg, R. H. andW. Sturges. 1976. Velocity observations in the west passage of Narragansett Bay: A partially mixed estuary.Journal of Physical Oceanography 6:345–354.CrossRefGoogle Scholar
  65. Wood, W. 1635. “New England’s Prospect.” The Cotes, London. Edited by A. T. Vaughan and reprinted by University of Massachusetts Press, Amherst, Massachusetts, 1977.Google Scholar
  66. Wroth, L. C. 1970. The Voyages of Giovanni da Verrazzano: 1524–1528. Yale University Press, New Haven, Connecticut.Google Scholar

Copyright information

© Estuarine Research Federation 1997

Authors and Affiliations

  • Scott W. Nixon
    • 1
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansett

Personalised recommendations