Estuaries

, Volume 14, Issue 4, pp 372–381

Diel dissolved oxygen dynamics and eutrophication in a shallow, well-mixed tropical lagoon (Cancun, Mexico)

  • Enrique Reyes
  • Martin Merino
Article

Abstract

Bojorquez Lagoon (BL), located on the Mexican Caribbean, has received sewage and dredging impacts as a result of tourism development. The lagoon supports a high diversity of primary producers compared to sheltered adjacent lagoons dominated byThalassia testudinum communities. The Diurnal Curve Method (Odum and Hoskin 1958) was used to measure community metabolism and assess eutrophication in BL by comparing it to the nonimpacted lagoons and to other systems studied with this method. Dissolved oxygen community input to the water column in BL ranged between 8.3 g O2 m−2 d−1 and 41.5 g O2 m−2 d−1 during 1985 and 1986, and averaged 17.1, whereas dissolved oxygen community consumption ranged from 6.4 g O2 m−2 d−1 during 1985 and 1986, and averaged 17.1, whereas dissolved oxygen community consumption ranged from 6.4 g O2 m−2 d−1 to 37.6 g O2 m−2 d−1 and averaged 15.2. These values are higher than those found for the adjacent lagoons and similar coastal lagoons, and are similar to results from other lagoons with sewage or seafood waste discharge. Net flux of oxygen from the community to the water column averaged 1.9 g O2 m−2 d−1 and ranged from −9.8 g O2 m−2 d−1 to 8.1 g O2 m−2 d−1. These values are low compared to the adjacent lagoons, and close to zero, as in dystrophic environments. Primary productivity, as estimated by oxygen input, increased in BL during the period of study, indicating that eutrophication is proceeding, but the lagoon has not reached yet a level of “critical eutrophication” as defined by Mee (1988).

Resumen

La Laguna Bojórquez (LB), ubicada en el Caribe Mexicano, ha sido objeto de impactos por dragados y descargas cloacales, ocasionados por el desarrollo turistico de Cancún. La laguna presenta una gran variedad de productores primarios en comparación con lagunas cercanas en las que domina una comunidad deThalassia testudinum. Se utilizó el método de la curva diurna de oxígeno para medir el metabolismo comunitario (Odum y Hoskin 1958) y evaluar la eutroficación de la LB, comparandola con las lagunas adjacentes y otros sistemas lagunares estudiados con este método. El oxígeno disuelto liberado por la comunidad hacia la columna de agua en LB osciló entre 8.3 g O2 m−2d−1 y 41.5 g O2 m−2 d−1 durante 1985 y 1986, con media de 17.1 g O2 m−2 d−1. El cons comunitario de oxígeno disuelto fue en promedio de 15.2 g O2 m−2 d−1 y osciló de 6.4 O2 m−2d−1 a 37.6 g O2 m−2 d−1. Estos valores son superiores a los encontrados en la laguna adjacente y en otras lagunas similares, pero son parecidos a los observados en lagunas afectadas por descargas diversas. El flujo neto de oxigeno de la comunidad hacia la columna de agua fue en promedio de 1.9 g O2 m−2 m−1 d−1 y varió de −9.8 g O2 m−2d−1 a 8.1 g O2 m−2 d−1, siendo valores inferiores a los encontrados en las lagunas adyacentes y cercanos a cero, como en ambientes distróficos. Laproducción primaria, estimada mediante el oxígeno producido, aumentó en la LB durante el período de estudio, indicando que el proceso de eutroficacion avanza, pero la laguna no ha alcanzado aún el nivel de “Eutroficación Crítica” definido por Mee (1988).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Collado, L., L. Segura, and M. Merino. 1988. Observaciones sobre dos escifomedusas del géneroCassiopea en la Laguna de Bojórquez, Quintana Roo, México.Revista de Investigaciones Marinas, La Habana, Cuba, 21–27.Google Scholar
  2. Copeland, B. J. andT. C. Dorris. 1964. the use of a clear plastic dome to measure gaseous diffusion rate in natural waters.Limnology and Oceanography 9:494–499.Google Scholar
  3. Cory, R. L. 1994. Changes in oxygen and primary production of the Patuxent Estuary, Maryland, 1963 through 1969.Chesapeake Science 15:78–83.CrossRefGoogle Scholar
  4. Costa-Moreira, A. L. In Press. Trophic states of Saquarema Lagoon during an annual cycle.In Marine Coastal Eutrophication International Conference. April 21–24, 1990. Bologna, Italy.Google Scholar
  5. Cúlhuac, S. S. 1987. Importancia Ecológica de las Algas Epífitas de las Fanerógamas Marinas en la Laguna Bojórquez, Quintana Roo. Final Report of Social Service. Universidad Autónoma Metropolitana-Iztapalapa, México. 33 p.Google Scholar
  6. Flores, V. F. 1985. Aportes de materia orgánica por los principales productores primarios a un ecosistema lagunar estuarino de boca efímera. Ph. D. Dissertation, Universidad Nacional Autónoma de México, Mexico City. 184 p.Google Scholar
  7. Goldman, C. R. 1988. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultraoligotrophic Lake Tahoe, California-Nevada.Lymnology and Oceanography 33:1321–1333.Google Scholar
  8. González, L. A. 1989. Hydrología y Nutrientes de la Laguna Bojórquez. M.S.Thesis, Universidad Nacional Autónoma de México. Mexico City. 89 p.Google Scholar
  9. Hartman, R. T. andD. L. Brown 1967. Changes in composition of the internal atmosphere of submerged vascular hydrophytes in relation to photosynthesis.Ecology 48:252–258.CrossRefGoogle Scholar
  10. Jordán, D. E., M. Angot, andR. de la Torre. 1978. Prospección biológica de la Laguna Nichupté, Cancún, Quintana Roo, México: Nota científica.Anales del Centro de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México 5: 179–188.Google Scholar
  11. Jordán, D. E., E. Martin, P. O. Thome, and M. Merino. 1983. Circulación e Hidrología del Sistema Lagunar Nichupté. Universidad Nacional Autónoma de México. Final Report to Fondo Nacional de Fomento al Turismo. México. Mexico City. 72 p.Google Scholar
  12. Kanwisher J 1963. On the exchange of gases between the atmosphere and the sea.Deep Sea Research 10:195–207.Google Scholar
  13. Kemp, W. M. andW. R. Boynton. 1980. Influence of biological and physical processes on dissolved oxygen dynamics in an estuarine system: Implications for measurement of community metabolism.Estuarine and Coastal Marine Science 11: 407–431.CrossRefGoogle Scholar
  14. Kester, D. R. 1975. Dissolved gasses other than CO2, p. 497–556In J. P. Riley and G. Skirrow (eds.). Chemical Oceanography, Academic Press, London. Vol. 1, Chap. 8.Google Scholar
  15. Kjerfve, B. 1986. Comparative oceanography of coastal lagoons. p 63–82.In D. Wolfe (ed.), Estuarine Variability. Academic Press, New York.Google Scholar
  16. Margalef, R. 1982. Ecología. Omega, Barcelona. 951 p.Google Scholar
  17. McKellar, H. N., Jr. 1977. Metabolism and model of estuarine bay ecosystem affected by a coastal power plant.Ecological Modelling 3:85–118.CrossRefGoogle Scholar
  18. Mee, L. D. 1977. The chemistry and hydrography of some tropical coastal lagoons—Pacific Coast of Mexico. Ph.D. Dissertation. University of Liverpool. England. 125 p.Google Scholar
  19. Mee, L. D. 1988. A definition of “critical eutrophication” in the marine environment.Revista de Biología Tropical 36:159–161.Google Scholar
  20. Merino, M. 1987. The coastal zone of Mexico.Coastal Management 15:27–42.CrossRefGoogle Scholar
  21. Merino, M., S. Czitrom, E. Jordán, E. Martin, P. Thome, andO. Moreno. 1990. Hydrology and rain flushing of the Nichupte Lagoon System, Cancun, Mexico.Estuarine, Coastal and Shelf Science 30:223–237.CrossRefGoogle Scholar
  22. Merino, M. and M. Gallegos. 1986. Evaluación del Impacto Ambiental Generable sobre el Sistema Lagunar Nichupté por el Dragado Programado Para Rellenar el Lote 18-A en Cancún, Q. Roo. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. Final Report to PIADISA, ICA. México. 87 p.Google Scholar
  23. Merino, M. andL. Otero. 1990. Atlas Ambiental Costero, Puerto Morelos-Quintana Roo. Centro de Investigaciones de Quintana Roo, México. 89 p.Google Scholar
  24. Nixon, S. W. andC. A. Oviatt. 1972. Preliminary measurements of midsummer metabolism in beds of eelgrass.Zostera marina. Ecology 53:150–153.Google Scholar
  25. Odum, H. T. 1956. Primary production in flowing waters.Limnology and Oceanography 2:85–97.CrossRefGoogle Scholar
  26. Odum, H. T. 1963. Productivity measurements in Texas turtle grass and the effects of dredging an intracoastal channel.Publications of the Institute of Marine Science, University of Texas 9:48–58.Google Scholar
  27. Odum, H. T., T. Burkholder, andJ. Rivero. 1959. Measurements of productivity of turtle grass flats, reefs, and the Bahia Fosforecente of Southern Puerto Rico.Publications of the Institute of Marine Science, University of Texas 6:159–170.Google Scholar
  28. Odum, H. T., R. P. Cuzon du Rest, R. J. Beyers, andC. Allbaugh. 1963. Diurnal metabolism, total phosphorus, Ohle anomaly, and zooplankton diversity of abnormal marine ecosystems of Texas.Publications of the Institute of Marine Science, University of Texas 9:404–453.Google Scholar
  29. Odum, H. T. andC. M. Hoskin. 1958. Comparative studies on the metabolism of marine waters.Publications of the Institute of Marine Science, University of Texas 5:16–46.Google Scholar
  30. Odum, H. T. andR. F. Wilson. 1962. Further studies on reaeration and metabolism of Texas bays, 1958–1960.Publications of the Institute of Marine Science, University of Texas 8: 20–55.Google Scholar
  31. Phillips, R. C. andE. G. Meñez. 1987. Seagrasses.Smithronian Contributions to Marine Science 34:1–104.Google Scholar
  32. Reyes, E. 1988. Evaluación de la productividad primaria en la laguna Bojórquez, Cancún, Quintana Roo, México. M.S. Thesis. Universidad Nacional Autónoma de México. Mexico City. 50 p.Google Scholar
  33. SAS Institute Inc. 1987. SAS User’s Guide: Statistics, version 5. SAS Institute, Inc., Cary, NC. 956 p.Google Scholar
  34. Seaton, A. M. andJ. W. Day,Jr. 1983. A trophic state index for the Louisiana coastal zone. Coastal Ecology Laboratory, Center for Wetland Resources, Louisiana State University, Baton Rouge. Final Report to the Louisiana Water Resource Research Institute. Baton Rouge, Louisiana. 50 p.Google Scholar
  35. Serviere, Z. E. 1986. Ficoflora de la Laguna de Bojórquez, Quintana Roo. B.S. Thesis. Universidad Nacional Autónoma de México. Mexico City. 253 p.Google Scholar
  36. Strickland, J. D. H. and T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. Bulletin 167. Fisheries Research Board of Canada. 306 p.Google Scholar
  37. Thayer, G. W., D. A. Wolfe, andR. B. Williams 1975. The impact of man on seagrass systems.American Scientist 63:288–296.Google Scholar
  38. Tissen, S. B. andA. Eijgenraam. 1982. Primary and community production in the Southern Bight of the North Sea deduced from oxygen concentrations variation in the spring of 1980.Netherlands Journal of Sea Research 16:247–259.CrossRefGoogle Scholar
  39. Vollenweider, R. A. In Press. Coastal marine eutrophication.In Marine Coastal Eutrophication International Conference. April 21–24, 1990. Bologna, Italy.Google Scholar
  40. Zieman, J. C. andR. G. Wetzel 1980. Productivity in seagrasses: Methods and rates, p. 86–116.In R. C. Phillips and C. P. McRoy (eds.) Handbook of Seagrass Biology: An Ecosystem Perspective. Garland STPM Press, New York.Google Scholar

Copyright information

© Estuarine Research Federation 1991

Authors and Affiliations

  • Enrique Reyes
    • 1
  • Martin Merino
    • 2
  1. 1.Department of Marine Science Coastal Ecology InstituteLouisiana State UniversityBaton Rouge
  2. 2.Laboratorio de Ecología Costera Instituto de Ciencias del Mar y LimnologiaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations