, Volume 19, Issue 2, pp 202–212 | Cite as

Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II. role in sediment stability and shallow-water food webs

  • Douglas C. MillerEmail author
  • Richard J. Geider
  • Hugh L. MacIntyre


The microphytobenthos form an important component of all shallow-water ecosystems where enough light reaches the sediment surface to support appreciable primary production. Although less conspicuous than macroalgae or vascular plants, the microphytobenthos can contribute significantly to primary production and can modify habitat characteristics. The microphytobenthos alter sediment properties (e.g., erodibility) both directly, in the extreme forming a mat or scum on the sediment surface, and indirectly by modifying the activities of benthic infauna (e.g., pelletization, burrowing, tube building, and sediment tracking). Carbon dioxide fixed by the microphytobenthos supports higher, grazing trophic levels. These include deposit-feeding and suspension-feeding macrofauna as well as meiofauna and microfauna. Quantitative relations between the feeding and growth rates of macrofauna and the abundance of microphytobenthos and suspended organic matter (i.e., functional responses) are reviewed. Given the current state of knowledge of the direct and indirect interactions involving trophic dynamics, sediment properties, and benthic microalgae, we argue for reductionist studies of particular interactions as distinct entities. This is a prerequisite for the emergence of a comprehensive picture of unvegetated ecosystems and the ability to predict their responses to man’s activities. *** DIRECT SUPPORT *** A01BY074 00005


Salt Marsh Polychaete Marine Biology Meiofauna Marine Ecology Progress Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Admiraal, W., L. A. Bouwman, L. Hoekstra, and K. Romeyn. 1983. Qualitative and quantitative interactions between microphytobenthos and herbivorous meiofauna in a brackish intertidal mudflat. Internationale Revue der Gesamten Hydrobiologie 68:175–191.CrossRefGoogle Scholar
  2. Admiraal, W., H. Peletier, and T. Brouwer. 1984. The seasonal succession patterns of diatom species on an intertidal mudflat: An experimental analysis. Oikos 42:30–40.CrossRefGoogle Scholar
  3. Admiraal, W., H. Peletier, and H. Zomer. 1982. Observations and experiments on the population dynamics of epipelic diatoms of an estuarine mudflat. Estuarine Coastal and Shelf Science 14:471–487.CrossRefGoogle Scholar
  4. Anderson, F. E. 1976. Rapid setting rates observed in sediments resuspended by boat waves over a tidal flat. Netherlands Journal of Sea Research 10:44–58.CrossRefGoogle Scholar
  5. Arfi, R., D. Guiral, and M. Bouvy. 1993. Wind induced resuspension in a shallow tropical lagoon. Estuarine Coastal and Shelf Science 36:587–604.CrossRefGoogle Scholar
  6. Baillie, P. W. and B. L. Welsh. 1980. The effect of tidal resuspension on the distribution of intertidal epipelic algae in an estuary. Estuarine and Coastal Marine Science 10:165–180.CrossRefGoogle Scholar
  7. Bayne, B. L., A. J. S. Hawkins, and E. Navarro. 1987. Feeding and digestion by the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations. Journal of Experimental Marine Biology and Ecology 111:1–22.CrossRefGoogle Scholar
  8. Bianchi, T. S. and J. S. Levinton. 1981. Nutrition and food limitation of deposit feeders. II. Differential effects of Hydrobia totteni and Illyanassa obsoleta. Journal of Marine Research 39: 547–556.Google Scholar
  9. Bianchi, T. S. and J. S. Levinton. 1984. The importance of microalgae, bacteria, and particulate organic matter in the somatic growth of Hydrobia totteni. Journal of Marine Research 42:431–443.Google Scholar
  10. Blanchard, G. F. 1990. Overlapping microscale dispersion patterns of meiofauna and microphytobenthos. Marine Ecology Progress Series 68:101–111.CrossRefGoogle Scholar
  11. Blanchard, G. F.. 1991. Measurement of meiofaunal grazing rates on microphytobenthos: Is primary production a limiting factor? Journal of Experimental Marine Biology and Ecology 147: 37–46.CrossRefGoogle Scholar
  12. Bock, M. J. 1992. Feeding biology and food resources on an intertidal sandflat: Storm effects. M.S. Thesis, University of Delaware, Lewes, Delaware.Google Scholar
  13. Bock, M. J. and D. C. Miller. 1994. Seston variability and daily growth in Mercenaria mercenaria on an intertidal sandflat. Marine Ecology Progress Series 114:117–127.CrossRefGoogle Scholar
  14. Bock, M. J. and D. C. Miller. 1995. Storm effects on particulate food resources on an intertidal sandflat. Journal of Experimental Marine Biology and Ecology 187:81–101.CrossRefGoogle Scholar
  15. Bodin, P. and D. Boucher. 1982. Evolution à moyen-terme du meiobenthos et du microphytobenthos sur quelques plages touchés par la maree noire de l'Amoco Cadiz, p. 245–268. In E. R. Gundlach and M. Marchand (eds.), Ecological Study of the Amoco Cadiz Oil Spill: Report of the NOAA-CNEXO Joint Scientific Commission. Brest, France.Google Scholar
  16. Brandon, E. A. A.. 1991. Interactions of Saccolgossus, sediment, and microalgae: Theory and experiment. M.S. Thesis, University of Delaware, Lewes, Delaware.Google Scholar
  17. Burnett, F. H. 1962. The Secret Garden. Lippincott, Philadelphia.Google Scholar
  18. Cadée, G. C. and J. Hegeman. 1974. Primary production of the benthic microglora living on tidal flats in the Dutch Wadden Sea. Netherlands Journal of Sea Research 8:260–291.CrossRefGoogle Scholar
  19. Cammen, L. M. 1989. The relationship between ingestion rate of deposit feeders and sediment nutritional value, p. 201–222. In G. Lopez, G. Taghon, and J. Levinton (eds.), Ecology of Marine Deposit Feeders. Springer-Verlag, New York.Google Scholar
  20. Carey, D. A. and L. M. Mayer. 1990. Nutrient uptake by a deposit-feeding enteropneust: Nitrogen sources. Marine Ecology Progress Series 63:79–84.CrossRefGoogle Scholar
  21. Cheng, I.-J., J. S. Levinton, M. McCartney, D. Martinez, and M. J. Weissburg. 1993. A bioassay approach to seasonal variation in the nutritional value of sediment. Marine Ecology Progress Series 94:275–285.CrossRefGoogle Scholar
  22. Cloern, J. E.. 1982. Does the benthos control phytoplankton biomass in south San Francisco Bay? Marine Ecology Progress Series 9:191–202CrossRefGoogle Scholar
  23. Connor, M. S. and R. K. Edgar. 1982. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53:271–275.CrossRefGoogle Scholar
  24. Curtis, I. A. and L. E. Hurd. 1981. Nutrient procurement strategy of a deposit-feeding estuarine neogastropod Ilyanassa obsoleta. Estuarine and Coastal Marine Science 13:277–285.CrossRefGoogle Scholar
  25. Dade, W. B., P. A. Jumars, and D. L. Penry. 1990. Supply-side optimization: Maximizing absorptive rates, p. 531–556. In R. N. Hughes (ed.), Behavioural Mechanisms of Food Selection. Springer-Verlag, Berlin.Google Scholar
  26. Dame, R., N. Dankers, T. Prins, H. Jongsma, and A. Smaal. 1991. The influence of mussel beds on nutrients in the western Wadden Sea and eastern Scheldt estuaries. Estuaries 14: 130–138.CrossRefGoogle Scholar
  27. Dame, R., R. Zingmark, and D. Nelson. 1980. Filter feeding coupling between estuarine water column and benthic subsystems, p. 521–526. In V. S. Kennedy, (ed.), Estuarine Perspectives. Academic Press, New York.Google Scholar
  28. Dauer, D. M., C. A. Maybury, and R. M. Ewing. 1981. Feeding behavior and general ecology of several spionid polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 54:21–38.CrossRefGoogle Scholar
  29. Decho, A. W. 1990. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Oceanography and Marine Biology: An Annual Review 28: 73–153.Google Scholar
  30. Decho, A. W. and G. R. Lopez. 1993. Exopolymer microenvironments of microbial flora: Multiple and interactive effects on trophic relationships. Limnology and Oceanography 38:1633–1645.Google Scholar
  31. Decho, A. W. and D. J. W. Moriarty. 1990. Bacterial exopolymer utilization by a harpacticoid copepod: A methodology and results. Limnology and Oceanography 35:1039–1049.Google Scholar
  32. Deflaun, M. F. and L. M. Mayer. 1983. Relationships between bacteria and grain surfaces in intertidal sediments. Limnology and Oceanography 28:873–881.Google Scholar
  33. de Jonge, V. N. 1985. The occurrence of ‘episamic’ diatom populations: A result of interaction between physical sorting of sediment and certain properties of diatom species. Estuarine Coastal and Shelf Science 21:607–622.CrossRefGoogle Scholar
  34. de Jonge, V. N. 1990. Response of the Dutch Wadden Sea ecosystem to phosphorous discharges from the River Rhine. Hydrobiologia 195:49–62.CrossRefGoogle Scholar
  35. de Jonge, V. N. and J. van der Bergs. 1987. Experiments on the resuspension of estuarine sediments containing benthic diatoms. Estuarine Coastal and Shelf Science 24:725–740.CrossRefGoogle Scholar
  36. Delgado, M., V. de Jonge, and H. Peletier. 1991. Experiments on the resuspension of natural microphytobenthos populations. Marine Biology (Berlin) 108:321–328.CrossRefGoogle Scholar
  37. Demers, S., J.-C. Therriault, E. Bourget, and A. Bah. 1987. Resuspension in the shallow sublittoral zone of a macrotidal estuarine environment: Wind influence. Limnology and Oceanography 32:327–339.Google Scholar
  38. Eckman, J. E. 1985. Flow disruption by an animal-tube mimic affects sediment bacterial colonization. Journal of Marine Research 43:419–435.Google Scholar
  39. Eckman, J. E., A. R. M. Nowell, and P. A. Jumars. 1981. Sediment destabilization by animal tubes. Journal of Marine Research 39:361–374.Google Scholar
  40. Fager, E. W. 1964. Marine sediments: Effects of a tube-building polychaete. Science 143:356–359.CrossRefGoogle Scholar
  41. Fegley, S. R., B. A. MacDonald, and T. R. Jacobsen. 1992. Short-term variation in the quantity and quality of seston available to benthic suspension feeders. Estuarine Coastal and Shelf Science 34:393–412.CrossRefGoogle Scholar
  42. Fenchel, T. 1978. The ecology of micro- and meiobenthos. Annual Review of Ecology and Systematics 9:99–121.CrossRefGoogle Scholar
  43. Fenchel, T. and L. H. Kofoed. 1976. Evidence for exploitative interspecific competition in mud snails. Oikos 27:367–376.CrossRefGoogle Scholar
  44. Floderus, S. and L. Pihl. 1990. Resuspension in the Kattegat: Impact of variation in wind climate and fishery. Estuarine Coastal and Shelf Science 31:487–498.CrossRefGoogle Scholar
  45. Frostick, L. E. and I. N. McCave. 1979. Seasonal shifts of sediment within an estuary mediated by algal growth. Estuarine and Coastal Marine Science 9:569–576.CrossRefGoogle Scholar
  46. Fry, B. 1984. 13C/12C ratios and the trophic importance of algae in Florida Syringodium filifome seagrass meadows. Marine Biology 79:11–19.CrossRefGoogle Scholar
  47. Gallagher, E. D., G. B. Gardner, and P. A. Jumars. 1990. Competition among the pioneers in a seasonal soft-bottom benthic succession: Field experiments and analysis of the Gilpin-Ayala competition model. Oecologia 83:427–442.CrossRefGoogle Scholar
  48. Gallagher, E. D., P. A. Jumars, and D. D. Trueblood. 1983. Facilitation of soft-bottom benthic succession by tube builders. Ecology 64:1200–1216.CrossRefGoogle Scholar
  49. Garrad, P. N. and R. D. Hey. 1987. Boat traffic, sediment suspension, and turbidity in a broadland river. Journal of Hydrobiology 95:289–297.Google Scholar
  50. Grant, J. 1983. The relative magnitude of biological and physical sediment reworking in an intertidal community. Journal of Marine Research 41:673–689.Google Scholar
  51. Grant, J. 1985. A method for measuring the horizontal transport of organic carbon over sediments. Canadian Journal of Fisheries and Aquatic Science 42:595–602.Google Scholar
  52. Grant, J., C. T. Enright, and A. Griswold. 1990. Resuspension and growth of Ostrea edulis: A field experiment. Marine Biology 104:51–59.CrossRefGoogle Scholar
  53. Grant, J., E. L. Mills, and C. M. Hopper. 1986. A chlorophyll budget of the sediment-water interface and the effect of stabilizing biofilms on particle fluxes. Ophelia 26:207–219.Google Scholar
  54. Grizzle, R. E. and R. A. Lutz. 1989. A statistical model relating horizontal seston fluxes and bottom sediment characteristics to growth of Mercenaria mercenaria. Marine Biology 102:95–105.CrossRefGoogle Scholar
  55. Grizzle, R. E. and P. J. Morin. 1989. Effect of tidal currents, seston, and bottom sediments on growth of Mercenaria mercenaria: Results of a field experiment. Marine Biology 102:85–93.CrossRefGoogle Scholar
  56. Gucinski, H. 1982. Sediment resuspension from small boat induced turbulence. Anne Arundel Community College, Arnold, Maryland.Google Scholar
  57. Haines, E. B. and C. L. Montaque. 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60: 48–56.CrossRefGoogle Scholar
  58. Hall, S. L. and F. M. J. Fisher. 1985. Annual productivity and extracellular release of dissolved organic compounds by the epibenthic algal community of a brackish marsh. Journal of Phycology 21:277–281.Google Scholar
  59. Holland, A., R. Zingmark, and J. Dean. 1974. Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. Marine Biology (Berlin) 27:191–196.CrossRefGoogle Scholar
  60. Hylleberg, J. and V. F. Gallucci. 1975. Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta. Marine Biology (Berlin) 32:167–178.CrossRefGoogle Scholar
  61. Incze, L. S., L. M. Mayer, E. B. Sherr, and S. A. Macko. 1982. Carbon inputs to bivalve mollusks: A comparison of two estuaries. Canadian Journal of Fisheries and Aquatic Science 39: 1348–1352.Google Scholar
  62. Jørgensen, B. B. and N. P. Revsbech. 1983. Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography 28:1075–1093.Google Scholar
  63. Judge, M. L., L. D. Coen, and K. L. Heck, Jr. 1993. Does Mercenaria mercenaria encounter elevated food levels in seagrass beds? Results from a novel technique to collect suspended food resources. Marine Ecology Progress Series 92:141–150.CrossRefGoogle Scholar
  64. Jumars, P. A. and A. R. M. Nowell. 1984. Fluid and sediment dynamic effects on marine benthic community structure. American Zoology 24:45–55.Google Scholar
  65. Jumars, P. A., R. F. L. Self, and A. R. M. Nowell. 1982. Mechanics of particle selection by tentaculate deposit-feeders. Journal of Experimental Marine Biology and Ecology 64:47–70.CrossRefGoogle Scholar
  66. Karrh, R. R. and D. C. Miller. 1994. Functional response of a surface deposit feeder, Saccoglossus kowalevskii. Limnology and Oceanography 39:1455–1464.Google Scholar
  67. Karrh, R. R. and D. C. Miller. 1996. Effect of flow and sediment transport feeding rate of the surface-deposit feeder Succoglossus kowalevskii. Marme Ecology Progress Series in press.Google Scholar
  68. Kautsky, N. and S. Evans. 1987. Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Marine Ecology Progress Series 38:201–212.CrossRefGoogle Scholar
  69. Kemp, P. F. 1986. Direct uptake of detrital carbon by the deposit-feeding polychaete Euzonus mucronata (Treadwell). Journal of Experimental Marine Biology and Ecology 99:49–61.CrossRefGoogle Scholar
  70. Levinton, J. S. 1979. Deposit feeders their resources, and the study of resource limitation, p. 117–141. In R. J. Livington (ed.), Ecological Processes in Coastal and Marine Ecosystems. Plenum Publishing, New York.Google Scholar
  71. Levinton, J. S. 1989. Deposit feeding and coastal oceanography, p. 1–13. In G. Lopez, G. Taghon, and J. Levinton (eds.), Ecology of Marine Deposit Feeders. Springer-Verlag, New York.Google Scholar
  72. Levinton, J. S. 1991. Variable feeding behavior in three species of Macoma (Bivalvia: Tellinacea) as a response to water flow and sediment transport. Marine Biology 110:375–383.CrossRefGoogle Scholar
  73. Levinton, J. S. and T. S. Bianchi. 1981. Nutrition and food limitation of deposit-feeders. I. The role of microbes in the growth of mud snails (Hydrobiidae). Journal of Marine Research 39:531–545.Google Scholar
  74. Levinton, J. S. and S. Stewart. 1988. Effects of sediment organics, detrial input, and temperature on demography, production, and body size of a deposit feeder. Marine Ecology Progress Series 49:259–266.CrossRefGoogle Scholar
  75. Lopez, G. R. and L. H. Kofoed. 1980. Epipsammic browsing and deposit feeding in mud snails (Hydrobiidae). Journal of Marine Research 38:585–599.Google Scholar
  76. Lopez, G. R. and J. S. Levinton. 1978. The availability of microorganisms attached to sediment particles as food for Hydrobia ventrosa Montagu (Gastropoda: Prosobranchia). Oecologia 32:263–275.CrossRefGoogle Scholar
  77. Lopez, G. R. and J. S. Levinton. 1987. Ecology of deposit-feeding animals in marine sediments. The Quarterly Review of Biology 62:235–259.CrossRefGoogle Scholar
  78. Lopez, G., G. Tagon, and J. Levinton (eds.) 1989. Ecology of Marine Deposit Feeders. Springer-Verlag, New York.Google Scholar
  79. Mallin, M. A., J. M. Burkholder, and M. J. Sullivan. 1992. Contributions of benthic microalgae to coastal fishery yield. Transactions of the American Fisheries Society 121:691–695.CrossRefGoogle Scholar
  80. Marsh, A. G., A. Grémare, and K. R. Tenore. 1989. Effect of food type and ration on growth of juvenile Capitella sp 1 (Annelida, Polychaeta): Macro- and micronutrients. Marine Biology 102:519–527.CrossRefGoogle Scholar
  81. Mayer, L. M., P. A. Jumars, G. L. Taghon, S. A. Macko, and S. Trumbore. 1993. Low-density particles as potential nitrogenous foods for benthos. Journal of Marine Research 51:373–389.CrossRefGoogle Scholar
  82. Mayer, L. M. and D. L. Rice. 1992. Early diagenesis of protein: A seasonal study. Limnology and Oceanography 37:280–295.Google Scholar
  83. Mayer, L. M., L. L. Schick, and F. W. Setchell. 1986. Measurement of protein in nearshore marine sediments. Marine Ecology Progress Series 30:159–165.CrossRefGoogle Scholar
  84. McClatchie, S., S. K. Juniper, and G. A. Knox. 1982. Structure of a mudflat diatom community in the Avon-Heathcote Estuary, New Zealand. New Zealand Journal of Marine and Freshwater Research 16:299–309.Google Scholar
  85. McIntire, A. D. 1969. Ecology of marine meiobenthos. Biological Reviews 44:245–290.Google Scholar
  86. Meadows, P. S., and J. G. Anderson. 1968. Micro-organisms attached to marine sand grains. Journal of the Marine Biology Association, United Kingdom 48:161–175.CrossRefGoogle Scholar
  87. Miller, D. C. 1989. Abrasion effects on microbes in sandy sediments. Marine Ecology Progress Series 55:73–82.CrossRefGoogle Scholar
  88. Miller, D. C., M. J. Bock, and E. J. Turner. 1992. Deposit and suspension feeding in oscillatory flow and sediment fluxes. Journal of Marine Research 50:489–520.CrossRefGoogle Scholar
  89. Miller, D. C., P. A. Jumars, and A. R. M. Nowell. 1984. Effects of sediment transport on deposit feeding: Scaling arguments. Limnology and Oceanography 29:1202–1217.Google Scholar
  90. Montagna, P. A. 1988. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Marine Ecology Progress Series 18:119–130.CrossRefGoogle Scholar
  91. Montagna, P. A., and W. B. Yoon. 1991. The effect of fresh-water inflow on meiofaunal consumption of sediment bacteria and microphytobenthos in San Antonio Bay, Texas, USA. Estuarine Coastal and Shelf Science 33:529–547.CrossRefGoogle Scholar
  92. Morrisey, D. J. 1988. Differences in effects of grazing by deposit-feeders Hydrobia ulvae (Pennant) (Gastropoda: Prosobranchia) and Corophium arenarium Crawford (Amphipoda) on sediment microalgal populations. 2. Quantitative effects. Journal of Experimental Marine Biology and Ecology 118:43–53.CrossRefGoogle Scholar
  93. Munro, A. L. S., J. B. J. Wells, and A. D. McIntyre. 1978. Energy flow in the flora and meiofauna of sandy beaches. Proceedings of the Royal Society of Edinburgh 76B:297–315.Google Scholar
  94. Muschenheim, D. K. 1987a. The dynamics of near-bed seston flux and suspension-feeding benthos. Journal of Marine Research 45:473–496.Google Scholar
  95. Muschenheim, D. K. 1987b. The role of hydrodynamic sorting of seston in the nutrition of a benthic suspension feeder, Spio setosa (Polychaeta: Spionidae). Biological Oceanography 4:265–288.Google Scholar
  96. Navarro, J. M., E. Clasing, G. Urrutia, G. Asencio, R. Stead, and C. Herrera. 1993. Biochemical composition and nutritive value of suspended particulate matter over a tidal flat of southern Chile. Estuarine Coastal and Shelf Science 37:59–73.CrossRefGoogle Scholar
  97. Newell, R. C. 1965. The role of detritus in the nutrition of two marine deposit-feeders, the prosobranch. Hydrobia ulvae and the bivalve Macoma balthica. Proceedings of the Zoological Society, London 144:25–45.CrossRefGoogle Scholar
  98. Nienhuis, P. H., and B. H. H. de Bree. 1984. Carbon fixation and chlorophyll in botton sediments of brackish Lake Grevelingen, the Netherlands. Netherlands Journal of Sea Research 18: 337–359.CrossRefGoogle Scholar
  99. Officer, C. G., T. J. Smayda, and R. Mann. 1982. Benthic filter feeding: A natural eutrophication control. Marine Ecology Progress Series 9:203–210.CrossRefGoogle Scholar
  100. Pace, M. L., S. Shimmel, and W. M. Darley. 1979. The effect of grazing by a gastropod, Nassarius obsoletus, on the benthic microbial community of a salt marsh mudflat. Estuarine and Coastal Marine Science 9:121–134.CrossRefGoogle Scholar
  101. Pamatmat, M. M. 1968. Ecology and metabolism of a benthic community on an intertidal sand flat. Internationale Revue der Gesamten Hydrobiologie 53:211–298.CrossRefGoogle Scholar
  102. Paterson, D. M. 1989. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnology and Oceanography 34:223–234.Google Scholar
  103. Paterson, D., R. Crawford, and C. Little. 1990. Subaerial exposure and changes in sediment stability of intertidal estuarine sediments. Estuarine Coastal and Shelf Science 30:541–556.CrossRefGoogle Scholar
  104. Penry, D. L., and P. A. Jumars. 1987. Modeling animal guts as chemical reactors. American Naturalist 129:69–96.CrossRefGoogle Scholar
  105. Peterson, B. J., and R. W. Howarth 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in saltmarsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography 32:1195–1213.Google Scholar
  106. Peterson, B. J., R. W. Howarth, and R. H. Garritt. 1986. Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology 67:865–874.CrossRefGoogle Scholar
  107. Ray, A. J. 1989. Influence of sediment dynamics and deposit feeding on benthic microalgae. M.S. Thesis, University of Delaware, Lewes, Delaware.Google Scholar
  108. Ruckelhaus, M. H., R. C. Wissmar, and C. A. Simenstad. 1993. The importance of autotroph distribution to mussel growth in a well-mixed, temperate estuary. Estuaries 16:898–912.CrossRefGoogle Scholar
  109. Self, R. F. L., and P. A. Jumars. 1988. Cross phyletic patterns of particle selection by deposit feeders. Journal of Marine Research 46:119–143.CrossRefGoogle Scholar
  110. Shimeta, J., and P. A. Jumars. 1991. Physical mechanisms and rates of particle capture by suspension-feeders. Oceanography and Marine Biology Annual Review 129:191–257.Google Scholar
  111. Steele, J. H., and I. E. Baird. 1968. Production ecology of a sandy beach. Limnology and Oceanography 13:14–25.Google Scholar
  112. Sullivan, M., and C. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food webs: Evidence from multiple isotope analyses. Marine Ecology Progress Series 62:149–159.CrossRefGoogle Scholar
  113. Swanberg, I. L. 1991. The influence of the filter-feeding bivalve Cerastoderma edule L. on microphytobenthos: A laboratory study. Journal of Experimental Marine Biology and Ecology 151:93–111.CrossRefGoogle Scholar
  114. Swedmark, B. 1964. The interstitial infauna of marine sand. Biological Reviews 39:1–42.CrossRefGoogle Scholar
  115. Taghon, G. L. 1981. Beyond selection: Optimal ingestion rate as a function of food value. The American Naturalist 118:202–214.CrossRefGoogle Scholar
  116. Taghon, G. L. 1982. Optimal foraging by deposit-feeding invertebrates: Roles of particle size and organic coating. Oecologia 52:295–304.CrossRefGoogle Scholar
  117. Taghon, G. L. 1992. Effects of animal density and supply of deposited and suspended food particles on feeding, growth, and small-scale distributions of two spionid polychaetes. Journal of Experimental Marine Biology and Ecology 162:77–95.CrossRefGoogle Scholar
  118. Taghon, G. L., and R. R. Greene. 1990. Effects of sedimentprotein concentration on feeding and growth rates of Abarenicola pacifica Healy et Wells (Polychaeta: Arenicolidae). Journal of Experimental Marine Biology and Ecology 136:197–216.CrossRefGoogle Scholar
  119. Taghon, G. L., A. R. M. Nowell, and P. A. Jumars. 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes. Science 210:262.CrossRefGoogle Scholar
  120. Taghon, G. L., R. F. L. Self, and P. A. Jumars. 1978. Predicting particle selection by deposit feeders: A model and its implications. Limnology and Oceanography 23:752–759.CrossRefGoogle Scholar
  121. Tenore, K. R. 1977. Growth of Capitella capitata cultured on various levels of detritus derived from different sources. Limnology and Oceanography 22:936–941.Google Scholar
  122. Tenore, K. R., R. B. Hanson, B. E. Dornseif, and C. N. Weiderhold. 1979. The effect of organic nitrogen supplement on the utilization of different sources of detritus. Limnology and Oceanography 24:350–355.Google Scholar
  123. Turner, E. J. and D. C. Miller. 1991a. Behavior of a passive suspension-feeder (Spiochaetopterus oculatus (Webster) under oscillatory flow. Journal of Experimental Marine Biology and Ecology 149:123–137.CrossRefGoogle Scholar
  124. Turner, E. J., and D. C. Miller. 1991b. Behavior and growth of Mercenaria mercenaria during simulated storm events. Marine Biology 111:55–64.CrossRefGoogle Scholar
  125. Ward, L. G. 1985. The influence of wind waves and tidal currents on sediment resuspension in middle Chesapeake Bay (and sediment stability relationships to benthos and anoxia). Geo Marine Letters 5:71–75.CrossRefGoogle Scholar
  126. Weise, W., and G. Rheinheimer. 1978. Scanning electron microscopy and epifluorescence investigations of bacterial colonization of marine sand sediments. Microbiol Ecology 4:175–178.CrossRefGoogle Scholar
  127. Wetzel, R. G. 1977. Carbon resources of a benthic salt marsh invertebrate, Nassarius obsoletus Say (Mollusca: Nassariidae), p. 293–308. In M. Wiley (ed.), Estuarine Processes, Volume 2. Academic Press, New York.Google Scholar
  128. Yager, P. L., A. R. M. Nowell, and P. A. Jumars. 1993. Enhanced deposition to pits: A local food source for benthos. Journal of Marine Research 51:209–236.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1996

Authors and Affiliations

  • Douglas C. Miller
    • 1
    Email author
  • Richard J. Geider
    • 1
  • Hugh L. MacIntyre
    • 1
  1. 1.Graduate College of Marine StudiesUniversity of DelawareLewes

Personalised recommendations