Estuaries

, Volume 3, Issue 4, pp 242–247

Seasonal oxygen depletion in Chesapeake Bay

  • Jay L. Taft
  • W. Rowland Taylor
  • Eric O. Hartwig
  • Randy Loftus
Article

Abstract

The spring freshet increases density stratification in Chesapeake Bay and minimizes oxygen transfer from the surface to the deep layer so that waters below 10 m depth experiece oxygen depletion which may lead to anoxia during June to September. Respiration in the water of the deep layer is the major factor contributing to oxygen depletion. Benthic respiration seems secondary. Organic matter from the previous year which has settled into the deep layer during winter provides most of the oxygen demand but some new production in the surface layer may sink and thus supplement the organic matter accumulated in the deep layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Barnes, C. A., and E. E. Collias. 1958. Some considerations of oxygen utilization rates in Puget Sound. J. Mar. Res. 17:68–80.Google Scholar
  2. Boicourt, W. C. 1969. A numerical model of the salinity distribution in Upper Chesapeake Bay. Master’s Essay. Johns Hopkins University. 59 p.Google Scholar
  3. Carpenter, J. H. 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10:141–143.Google Scholar
  4. Carpenter, J. H., and D. G. Cargo. 1957. Oxygen requirement and mortality of the blue crab in the Chesapeake Bay. Ches. Bay Inst. Tech. Rept. No. 13.Google Scholar
  5. Christensen, J. P., and T. T. Packard. 1976. Oxygen utilization and plankton metabolism in a Washington fjord. Estuarine Coastal Mar. Sci. 4:339–347.CrossRefGoogle Scholar
  6. Cronin, W. B., and D. W. Pritchard. 1975. Additional statistics on the dimensions of the Chesapeake Bay and its tributaries; Cross section widths and segment volumes per meter depth. Ches. Bay Inst. Spec. Rept. No. 42.Google Scholar
  7. Elliott, A. J. 1976. A numerical model of the internal circulation in a branching tidal estuary. Ches. Bay Inst. Spec. Rept. No. 54.Google Scholar
  8. Gordon, D. C., and W. H. Sutcliffe. 1973. A new dry combustion method for the simultaneous determination of total organic carbon and nitrogen in seawater. Mar. Chem. 1:231–244.CrossRefGoogle Scholar
  9. Hårgrave, B. T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr. 14:801–805.Google Scholar
  10. — 1972. A comparison of sediment oxygen uptake, hypolimnetic oxygen deficit and primary production in Lake Esrom, Denmark. Verh. Internat. Verein. Limnol. 18:134–139.Google Scholar
  11. Hartwig, E. O., and J. A. Michael. 1978. A sensitive Winkler Titrator for respiration measurements. Envir. Sci. Tech. 12:712–715.CrossRefGoogle Scholar
  12. Hobbie, J. E., B. J. Copeland, and W. G. Harrison. 1972. Nutrients in the Pamlico River Estuary, N.C. 1969–1971. Water Resources Research Institute, Univ. N.C. Rept. No. 76.Google Scholar
  13. IDOE. 1976. Anoxia on the middle Atlantic Shelf during the summer of 1976. Report of NSF Workshop on October 15–16, 1976, in Washington, D.C.Google Scholar
  14. Johnson, M. W., and T. G. Thompson. 1929. The sea water at the Puget Sound Biological Station from September 1927 to September 1928. Pub. Puget Sound Biol. Sta. 7:119–128.Google Scholar
  15. McCarthy, J. J., W. R. Taylor, and M. E. Loftus. 1974. Significance of nannoplankton in the Chesapeake Bay estuary and problems associated with the measurement of nannoplankton productivity. Mar. Biol. 24:7–16.CrossRefGoogle Scholar
  16. Newcombe, C. L., and W. A. Horne. 1938. Oxygen-poor waters of the Chesapeake Bay. Science 88:80–81.CrossRefGoogle Scholar
  17. Pamatmat, M. M. 1971. Oxygen consumption by the seabed. VI. Seasonal cycle of chemical oxidation and respiration in Puget Sound. Int. Revue Ges. Hydro. Biol. 56:769–793.CrossRefGoogle Scholar
  18. Pritchard, D. W. 1968. Chemical and physical oceanography of the Bay. In: Proceedings of the Governors Conference on Chesapeake Bay. 11–13 Sept., 1968. Session IV. p. 49–74. Wye Institute, Wye, Maryland.Google Scholar
  19. Richards, F. A. 1965. Anoxic basins and fjords, p. 611–645. In: J. P. Riley and G. Skirrow (eds.), Chemical Oceanography, Academic Press, N.Y.Google Scholar
  20. Rowe, G. T., C. H. Clifford, K. L. Smith, and P. L. Hamilton. 1975. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature 255:215–217.CrossRefGoogle Scholar
  21. Schiemer, E. W., and D. W. Pritchard. 1961. An induction conductivity indicator. Ches. Bay Inst. Tech. Rept. No. 25.Google Scholar
  22. Schubel, J. R. 1972. The physical and chemical conditions of Chesapeake Bay. J. Wash. Acad. Sci. 62:56–87.Google Scholar
  23. Seki, H., T. Tsuji, and A. Hattori. 1974. Effect of zooplankton grazing on the formation of the anoxic layer in Tokyo Bay. Estuarine Coastal Mar. Sci. 2:145–151.CrossRefGoogle Scholar
  24. Smith, K. L. 1974. Oxygen demands of San Diego trough sediments: An in situ study. Limnol. Oceanogr. 19:939–944.CrossRefGoogle Scholar
  25. Strickland, J. D. H., and T. R. Parsons. 1972. A practical handbook of sea water analysis. 2nd ed. Bull. Fish. Res. Board Can. 167.Google Scholar
  26. Taft, J. L., and W. R. Taylor. 1976a. Phosphorus distribution in the Chesapeake Bay. Chesapeake Sci. 17:67–73.CrossRefGoogle Scholar
  27. —, And-—. 1976b. Phosphorus dynamics in some coastal plain estuaries. In: M. Wiley (ed.), Estuarine Processes. Vol. 1. Academic Press, New York.Google Scholar
  28. Taylor, W. R., and W. B. Cronin. 1974. Station data, AESOP cruises. April 1969 to April 1971. Ches. Bay Inst. Special Report 38. 228 p.Google Scholar
  29. Venrick, E. L., J. R. Beers, and J. F. Heinbokel. 1977. Possible consequences of containing microplankton for physiological rate measurements. J. Exp. Mar. Biol. Ecol. 26:57–76.CrossRefGoogle Scholar
  30. Wang, D. P., and D. W. Kravits. 1980. A semi-implicit two-dimensional model of estuarine circulation. J. Phys. Oceanogr. 10:441–454.CrossRefGoogle Scholar
  31. Whaley, R. C., J. H. Carpenter, and R. L. Baker. 1966. Nutrient data summary 1964, 1965, 1966: Upper Chesapeake Bay (Smith Point to Turkey Point), Potomac, South, Severn, Magothy, Back, Chester, and Miles rivers; and Eastern Bay. Ches. Bay Inst. Spec. Rept. 12.Google Scholar

Copyright information

© Estuarine Research Federation 1980

Authors and Affiliations

  • Jay L. Taft
    • 1
  • W. Rowland Taylor
    • 1
  • Eric O. Hartwig
    • 2
  • Randy Loftus
    • 3
  1. 1.Chesapeake Bay InstituteThe Johns Hopkins UniversityBaltimore
  2. 2.Lawrence Berkeley LaboratoryMarine Sciences GroupBerkeley
  3. 3.Chesapeake Bay InstituteShady Side

Personalised recommendations