, Volume 11, Issue 4, pp 264–271 | Cite as

Filtration and oxygen consumption in mussels,Mytilus edulis, with and without pea crabs,Pinnotheres maculatus

  • Rosina Bierbaum
  • Sandra E. Shumway


Filtration rates and oxygen consumption rates were measured in mussels (Mytilus edulis) with and without pea crabs (Pinnotheres maculatus). Noninfested mussels had a significantly higher rate of oxygen consumption per hour (0.578 ml±0.012) than did infested mussels (0.352 ml±0.012). There was no significant effect of pea crab size on mussel respiration. Filtration rates of infested mussels were significantly lower than those of uninfested mussels. Assimilation efficiency was not significantly affected by pea crab infestation. The relationship between body size and oxygen consumption inP. maculatus is given by the following equation: {ie264-1} W0.626, where {ie264-2} is oxygen uptake (ml h−1), and W is dry weight (g). There was no difference between the sexes. It is concluded that the decreased oxygen consumption observed in infested mussels is not due to limitation of oxygen availability, but rather reflects a real metabolic response to the presence of the symbiont and the concomittant deprivation of food to the host. The effect is probably reversible, that is, damage can be compensated for after the symbiont has vacated the mussel, depending upon the period of infestation. Our results indicate that the mussels infested by pea crabs may be at an energetic disadvantage relative to mussels without pea crabs.


Oxygen Consumption Filtration Rate Oxygen Uptake Oxygen Consumption Rate Assimilation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, G. L. 1975 The effects of intertidal height and the parasitic crustaceanFabia subquadrata Dana on the nutrition and reproductive capacity of the California sea musselMytilus californianus Conrad.Veliger 17:299–306.Google Scholar
  2. Barnes, R. D. 1980 Invertebrate Zoology. Hold, Rinehart, and Winston, Philadelphia, Pennsylvania. 1089 p.Google Scholar
  3. Bayne, B. L. 1973. Physiological changes inMytilus edulis L. induced by temperature and nutritive stress.J. Mar. Biol. Assoc. U.K. 53:39–58.Google Scholar
  4. Bayne, B. L. (ed.). 1976. Marine Mussels: Their Ecology and Physiology. Cambridge University Press, Cambridge, England. 506 p.Google Scholar
  5. Bayne, B. L., R. J. Thompson, andJ. Widdows. 1973. Some effects of temperature and food on the rate of oxygen consumption byMytilus edulis L., p. 181–193.In: W. Wieser (ed.), Effects of Temperature on Ectothermic Organisms. Springer-Verlag, Berlin.Google Scholar
  6. Bayne, B. L., P. A. Gabbott, andJ. Widdows 1975. Some effects of stress in the adult on the eggs and larvae ofMytilus edulis L.J. Mar. Biol. Assoc. U.K. 55:675–689.Google Scholar
  7. Bayne, B. L., J. Widdows, andR. J. Thompson 1976. Physiology 2, p. 207–260.In B. L. Bayne (ed.), Marine Musssels, Their Ecology and Physiology. Cambridge University Press, London.Google Scholar
  8. Bierbaum, R. M. 1985. The physiological consequences of harboring a symbiont: The effect of pea crabs (Pinnotheres maculatus) on mussels (Mytilus edulis) Ph.D. Thesis. State University of New York Stony Brook. 222 p.Google Scholar
  9. Bierbaum R. M., andS. Ferson. 1986. Do symbiotic crabs decrease growth rate in mussels?Biol. Bull. 170:51–61.CrossRefGoogle Scholar
  10. Cheng, T. C. 1967. Marine mussels as host for symbiosis.Adv. Mar. Biol. 5:1–424.CrossRefGoogle Scholar
  11. Christensen, A. M., andJ. J. McDermott. 1958. Life-history and biology of the oyster crab,Pinnotheres ostreum Say.Biol. Bull. 114: 146–79.CrossRefGoogle Scholar
  12. Conover, R. 1966. Assimilation of organic matter by zooplankton.Limmol. Oceanogr. 11:338–354.CrossRefGoogle Scholar
  13. Craig, W. J. Jr. 1974. Physiological ecology of the commensal crabs,Polyonyx gibbesi Haig and Pinnixa chaetopterana Stimpson.Oecologia 20:235–243.CrossRefGoogle Scholar
  14. Crisp, M., J. Davenport, andS. E. Shumway. 1978. Effects of feeding and of chemical stimulation, on the oxygen uptake ofNassarius reticulatus (Gastropoda: Prosobranchia).J. Mar. Biol. Assoc. U.K. 58:387–399.Google Scholar
  15. Dales, R. P. 1957. Interrelations of organisms A. Commensalism.Geol. Soc. Am. 67:391–412.Google Scholar
  16. Dix, T. G. 1973. Mantle changes in the pearl oysterPinctada maxima induced by the pea crabPinnotheres villosulus.Veliger 15:330–331.Google Scholar
  17. Dral, A. D. G. 1968. On the feeding of mussels (Mytilus edulis L.) in concentrated food suspensions.Neth. J. Zool. 18:440–441.Google Scholar
  18. Elliot, N. G.. 1981. Respiratory responses of the pea crab,Pinnotheres hickmani (Guiler)Aust. J. Mar. Freshw. Res. 32:789–794.CrossRefGoogle Scholar
  19. Flower, F. B., and J. J. McDermott. 1953. Observations on the occurrence of the oyster crab,Pinnotheres ostreum, a related to oyster damage in Delaware Bay.Nat Shellfish Assoc. p. 44–46.Google Scholar
  20. Haven, D. 1959. Effects of pea crabs,Pinnotheres ostreum, on oysters,Crassostrea virginica.Proc. Nat. Shellfisheries Assoc. 49: 77–86.Google Scholar
  21. Hildreth, D. I. andD. J. Crisp. 1976. A corrected formula for calculation of filtration rate of bivalve molluscs in an experimental flowing system.J. Mar. Biol. Assoc. U.K. 56:111–120.Google Scholar
  22. Irvine, J., andH. G. Coffin. 1960. Laboratory culture and early stages ofFabia subquadrata (Dana) (Crustacea, Decapoda).Walla Walla College Publ. 28:1–24.Google Scholar
  23. Jones, J. B. 1977. Natural history of the pea crab in, Wellington Harbour, New Zealand.N.Z.J. Mar. Freshw. Res. 11:667–676.Google Scholar
  24. Krucyzynski, W. L. 1972. The effect of the pea crab,Pinnotheres maculatus Say, on growth of the bay scallop,Argopecten irradians concentricus (Say).Chesapeake Sci. 13:218–220.CrossRefGoogle Scholar
  25. Kruczynski, W. L. 1975. A radioactive tracer study of food uptake byPinnotheres maculatus in molluscan hosts.Biol. Bull. 148:60–67.CrossRefGoogle Scholar
  26. McDermott, J. J. 1961. The incidence and host-parasite relations of Pinnotherid crabs in bivalve molluscs of New Jersey.Bull. Ecol. Soc. Am. 42:82.Google Scholar
  27. Neter, J., andW. Wasserman. 1974. Applied Linear Statistical Models. Richard D. Irwin, Inc. Homewood, Illinois 842 p.Google Scholar
  28. Orton, J. H. 1920. The mode of feeding and sex phenomena in the pea crab (Pinnotheres pisum).Nature (London) 106:533.CrossRefGoogle Scholar
  29. Pearce, J. B. 1964. On reproduction inPinnotheres maculatus (Decapoda: Pinnotheridae).Biol. Bull. 127:384.Google Scholar
  30. Pearce, J. B. 1966. OnPinnixa faba andPinnotheres littoralis (Decapoda: Pinnotheridae) symbiotic with the clamTresus capax (Pelecypods: Mactridae), p. 565–589.In H. Barnes (ed.), Some Contemporary Studies in Marine Science. Allen and Unwin, London.Google Scholar
  31. Pregenzer, C., Jr. 1979. Effect ofPinnotheres hickmani on neutral red clearance byMytilus edulis.Aust. J. Mar. Freshw. Res. 30:547–550.CrossRefGoogle Scholar
  32. Rathbun, M. J. 1918. The Grapoid Crabs of North America. U.S. National Museum Bulletin 97, Washington, D.C. 461 p.Google Scholar
  33. Silas, E. G. and K. Alagarswami. 1965. On an instance of parasitisation by the pea-crab (Pinnotheres sp.) on the backwater clam [Meretrix casta (Chemnitz)] from India with a review of the work on the systematics ecology, biology and ethology of pea crabs of the genusPinnotheres Latreille, p. 1161–1227.In Proc. Symp. on Crustacea, Heald at Ernakulam, Part III, Mar. Biol. Assoc. India.Google Scholar
  34. Stauber, L. A. 1945.Pinnotheres ostreum, parasitic on the American oysterOstrea (Gryphaea) virginica.Biol. Bull. 88:269–291.CrossRefGoogle Scholar
  35. Theede, H. 1963. Experimentelle Untersuchungen uber die Filtrierleistung der Miesmuschel,Mytilus edulis L.Kiel.Meeresforsch. 19:20–41.Google Scholar
  36. Thompson, R. J., andB. L. Bayne. 1974. Some relationships between growth, metabolism and food in the musselMytilus edulis.Mar. Biol. 27:317–326.CrossRefGoogle Scholar
  37. Walne, P. R. 1972. The influence of current speed, body size and water temperature on the filtration rate of five species of bivalves.J. Mar. Biol. Assoc. U.K. 52:345–74.Google Scholar
  38. Wells, W. W. 1940. Ecological studies on the Pinnotherid crabs of Puget Sound.Univ. Wash. Publ. Oceanogr. 2:19–50.Google Scholar
  39. Widdows, J. 1973. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake ofMytilus edulis.Mar. Biol. 20:269–276.CrossRefGoogle Scholar
  40. Widdows, J., andB. L. Bayne. 1971. Temperature acclimation ofMytilus edulis with reference to its energy budget.J. Mar. Biol. Assoc. U.K. 51:827–843.CrossRefGoogle Scholar
  41. Willemsen, J. 1952. Quantities of water pumped by mussels (Mytilus edulis) and cockles (Cardium edule).Arch. Neerl Zool. 10:153–602.CrossRefGoogle Scholar
  42. Winter, J. E. 1973. The filtration rate ofMytilus edulis and its dependence on algal concentration, measured by a continuous automatic recording apparatus.Mar. Biol. 22:317–328.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 1988

Authors and Affiliations

  • Rosina Bierbaum
    • 1
  • Sandra E. Shumway
    • 1
  1. 1.Department of Ecology and EvolutionState University of New YorkStony Brook

Personalised recommendations