Advertisement

Estuaries

, Volume 7, Issue 1, pp 38–50 | Cite as

Distribution and community structure of estuarine copepods

  • Rolland S. Fulton
Article

Abstract

Distribution, abundance, and community structure were studied over a 30 month period in the planktonic copepod community of the estuaries near Beaufort, North Carolina. Many of the copepod species showed a demersal distribution during the day and entered the surface waters at night. Several species were largely confined to vegetated littoral areas during the day. The copepod community showed consistent trends of seasonal abundance and succession of dominant species which differed greatly from those found by previous workers, whose methods were inadequate to sample quantitatively the small, demersal copepods which dominated the community. Copepod abundances were higher than found in previous studies and were correlated with water temperature. Species composition changed from a winter community dominated byCentropages spp., to a spring community dominated byAcartia tonsa, to a summer community jointly dominated byParacalanus crassirostris andOithona spp. Copepods were much more important grazers in these estuaries than previous studies had concluded.

Keywords

Copepod Community Acartia Tonsa Newport River Estuary EUTERPINA ACUTIFRONS Benthic Harpacticoids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alldredge, A. L., andJ. M. King. 1977. Distribution, abundance, and substrate preferences of demersal reef zooplankton at Lizard Island Lagoon, Great Barrier Reef.Mar. Biol. 41:317–333.CrossRefGoogle Scholar
  2. Banse, K. 1964. On the vertical distribution of zooplankton in the sea, p. 53–125.In M. Sears (ed.), Progress in Oceanography, Vol. 2. MacMillan Press, New York.Google Scholar
  3. Barlow, J. P. 1955. Physical and biological processes determining the distribution of zooplankton in a tidal estuary.Biol. Bull. 109:211–225.CrossRefGoogle Scholar
  4. Beers, J. R., G. L. Stewart, andJ. D. H. Strickland. 1967. A pumping system for sampling small plankton.J. Fish. Res. Board Can. 24:1811–1818.Google Scholar
  5. Bell, S. S., andK. M. Sherman. 1980. A field investigation of meiofaunal dispersal: Tidal resuspension and implications.Mar. Ecol. Prog. Ser. 3:245–249.CrossRefGoogle Scholar
  6. Björnberg, T. K. S. 1967. The larvae and young forms ofEucalanus Dana (Copepoda) from tropical Atlantic waters.Crustaceana, 12:59–73.CrossRefGoogle Scholar
  7. Brownlee, K. A. 1965. Statistical theory and methodology in science and engineering. 2nd edition. Wiley, New York.Google Scholar
  8. Clarke, G. L. 1934. The diurnal migration of copepods in St. Georges Harbor, Bermuda.Biol. Bull. 67:456–460.CrossRefGoogle Scholar
  9. Cronin, L E., J. C. Daiber, andE. M. Hurlbert. 1962. Quantitative seasonal aspects of zooplankton in the Delaware River estuary.Chesapeake Sci. 3:63–93.CrossRefGoogle Scholar
  10. Cronin, T. W., andR. B. Forward, Jr. 1979. Tidal vertical migration: An endogenous rhythm in estuarine crab larvae.Science 205:1020–1022.CrossRefGoogle Scholar
  11. Cushing, D. H. 1951. The vertical migration of planktonic Crustacea.Biol. Rev. 26:158–192.CrossRefGoogle Scholar
  12. Emery, A. R. 1968. Preliminary observations on coral reef plankton.Limnol. Oceanogr. 13:293–303.Google Scholar
  13. Fulton, R. S. III. 1982a. Predation and the organization of an estuarine copepod community. Ph.D. Dissertation, Duke University, Durham, N.C.Google Scholar
  14. Fulton, R. S. III. 1982b. Preliminary results of an experimental study of the effects of mysid predation on estuarine zooplankton community structure.Hydrobiologia 93:79–84.CrossRefGoogle Scholar
  15. Grassle, J. F., andW. Smith. 1976. A similarity measure sensitive to the contribution of rare species and its use in investigation of variation in marine benthic communities.Oecologia 25:13–22.CrossRefGoogle Scholar
  16. Grindley, J. R. 1972. The vertical migration behavior of estuarine plankton.Zool. Afr. 7:13–20.Google Scholar
  17. Hamner, W. M., andJ. H. Carlton. 1979. Copepod swarms: Attributes and role in coral reef ecosystems.Limnol. Oceanogr. 24:1–14.Google Scholar
  18. Heck, K. L., Jr., andT. A. Thoman. 1981. Experiments on predator-prey interactions in vegetated aquatic habitats.J. Exp. Mar. Biol. Ecol. 53:125–134.CrossRefGoogle Scholar
  19. Heinle, D. R. 1966. Production of a calanoid copepod,Acartia tonsa in the Patuxent River estuary.Chesapeake Sci. 7:59–74.CrossRefGoogle Scholar
  20. Heinle, D. R. 1974. An alternate grazing hypothesis for the Patuxent estuary.Chesapeake Sci. 15:146–150.CrossRefGoogle Scholar
  21. Hopkins, T. L. 1977. Zooplankton distribution in the surface waters of Tampa Bay, Florida.Bull. Mar. Sci. 27:467–478.Google Scholar
  22. Icanberry, J. W., andR. W. Richardson. 1973. Quantitative sampling of live zooplankton with a filter-pump system.Limnol. Oceanogr. 18:333–335.Google Scholar
  23. Jacobs, J. 1961. Laboratory cultivation of the marine copepodPseudodiaptomus coronatus Williams.Limnol. Oceanogr. 6:443–446.CrossRefGoogle Scholar
  24. Jacobs, J. 1968. Animal behavior and water movement as determinants of plankton distribution in a tidal system.Sarsia. 34:355–370.Google Scholar
  25. Janssen, J. 1978. Feeding-behavior repertoire of the alewife,Alosa pseudoharengus, and the ciscosCoregonus hoyi andC. artedii.J. Fish Res. Board Can. 35:249–253.Google Scholar
  26. Kjelson, M. A., andG. N. Johnson. 1976. Further observations of the feeding ecology of postlarval pinfish,Lagodon rhomboides, and spot,Leiostomus xanthurus.U. S. Fish. Wildl. Serv. Fish. Bull. 74:423–432.Google Scholar
  27. Kjelson, M. A., D. S. Peters, G. W. Thayer, andG. N. Johnson. 1975. The general feeding ecology of postlarval fishes in Newport River estuary.U. S. Fish. Wildl. Serv. Fish. Bull. 73:137–144.Google Scholar
  28. Knatz, G. 1978. Succession of copepod species in a Middle Atlantic estuary.Estuaries 1:68–71.CrossRefGoogle Scholar
  29. Lawson, T. J., andG. D. Grice. 1970. The developmental stages ofCentropages typicus Kroyer (Copepoda, Calanoida).Crustaceana 18:187–208.CrossRefGoogle Scholar
  30. Lonsdale, D. J., andB. C. Coull. 1977. Composition and seasonality of zooplankton of North Inlet, South Carolina.Chesapeake Sci. 18:272–283.CrossRefGoogle Scholar
  31. Miller, R. J. 1974. Distribution and biomass of an estuarine ctenophore populationMnemiopsis leidyi (A. Agassiz).Chesapeake Sci. 15:1–8.CrossRefGoogle Scholar
  32. Minello, T. J., andG. A. Matthews. 1981. Variability of zooplankton tows in a shallow estuary.Contrib. Mar. Sci. 24:81–92.Google Scholar
  33. Morisita, M. 1959. Measuring of interspecific association and similarity between communities.Mem. Fac. Sci. Kyushu Univ. Ser. E (Biol.). 3: 65–80.Google Scholar
  34. Nichols, J. A. 1979. A simple floatation technique for separating meiobenthic nematodes from finegrained sediments.Trans. Am. Micros. Soc. 98:127–130.CrossRefGoogle Scholar
  35. Ohlhorst, S. L. 1982. Diel migration patterns of demersal reef zooplankton.J. Exp. Mar. Biol. Ecol. 60:1–15.CrossRefGoogle Scholar
  36. Orth, R. J. 1977. The importance of sediment stability in seagrass communities, p. 281–300.In B. C. Coull (ed.), Ecology of Marine Benthos. Univ. of S. Carolina Press, Golumbia.Google Scholar
  37. Paffenhöfer, G.-A. 1980. Zooplankton distribution as related to summer hydrographic conditions in Onslow Bay, North Carolina.Bull. Mar. Sci. 30:819–832.Google Scholar
  38. Paffenhöfer, G.-A., andS. C. Knowles. 1980. Omnivorousness in marine planktonic copepods.J. Plankton Res. 2:355–365.CrossRefGoogle Scholar
  39. Pearson, E. S., andH. O. Hartley. 1958. Biometrika tables for statisticians. Vol. I. Cambridge Univ. Press, Cambridge.Google Scholar
  40. Porter, J. W., andK. G. Porter. 1977. Quantitative sampling of demersal plankton migrating from different coral reef substrates.Limnol. Oceanogr. 22: 553–556.Google Scholar
  41. Reeve, M. R. 1975. The ecological significance of the zooplankton in the shallow subtropical waters of South Florida, p. 352–371.In L. E. Cronin (ed.), Estuarine Research, Vol. 1. Academic Press, New York.Google Scholar
  42. Rosenberg, G. G. 1981. Ecological growth strategies in the seaweedsGracilaria foliifera (Rhodophyceae) andUlva sp. (Chlorophyceae). Ph.D. Dissertation. Yale Univ. New Haven. Conn.Google Scholar
  43. Sage, L. E., andS. S. Herman. 1972. Zooplankton of the Sandy Hook Bay area, N.J.,Chesapeake Sci. 13:29–39.CrossRefGoogle Scholar
  44. Schwartz, F. J., andA. F. Chestnut. 1974. Biological investigations of noxious coelenterates and ctenophores in coastal North Carolina.N. C. Division of Commercial and Sport Fish, Spec. Scient. Rep. 27:1–59.Google Scholar
  45. Smith, S. L. 1978. The role of zooplankton in the nitrogen dynamics of a shallow estuary.Estuarine Coastal Mar. Sci. 7:555–565.CrossRefGoogle Scholar
  46. Sokal, R. R., andF. J. Rohlf. 1969. Biometry, W. H. Freeman, San Francisco.Google Scholar
  47. Sokal, R. R., andP. H. A. Sneath. 1963. Principles of Numerical Taxonomy. W. H. Freeman, San Francisco.Google Scholar
  48. Stearns, D. E., L. B. Cahoon, C. Wolfe, and R. B. Forward. 1980. Periodic vertical migration patterns of the calanoid copepodAcartia tonsa Dana and associated environmental factors. Am. Soc. Limnol. Oceanogr. 43rd Meeting (Abstract).Google Scholar
  49. Stickney, R. R., G. L. Taylor, andD. B. White. 1975. Food habits of young southeastern United States estuarine Sciaenidae.Chesapeake Sci. 16:104–114.CrossRefGoogle Scholar
  50. Sutcliffe, W. H. 1950. A qualitative and quantitative study of the surface zooplankton at Beaufort North Carolina. Ph.D. Dissertation. Duke Univ. Durham, N.C.Google Scholar
  51. Thayer, G. W. 1971. Phytoplankton production and the distribution of nutrients in a shallow unstratified estuarine system near Beaufort, N.C.,Chesapeake Sci. 12:240–253.CrossRefGoogle Scholar
  52. Thayer, G. W., D. E. Hoss, M. A. Kjelson, W. F. Hettler, jr. andM. W. LaCroix. 1974. Biomass of zooplankton in the Newport River estuary and the influence of postlarval fishes.Chesapeake Sci. 15:9–16.CrossRefGoogle Scholar
  53. Williams, R. B. 1966. Annual phytoplanktonic production in a system of shallow temperate estuaries, p. 699–716.In H. Barnes (ed.), Some Contemporary Studies in Marine Science. George Allen and Unwin Ltd., London.Google Scholar
  54. Williams, R. B., M. B. Murdoch, andL. K. Thomas. 1968. Standing crop and importance of zooplankton in a system of shallow estuaries.Chesapeake Sci. 9:42–51.CrossRefGoogle Scholar
  55. Wilson, C. B. 1932. The copepods of the Woods Hole region Massachusetts,Smithsonian Inst. U.S. National Mus. Bull. 158, Washington, D.C.Google Scholar
  56. Wilson, M. S. 1958. A review of the copepod genusRidgewayia (Calanoida) with descriptions of new species from the Dry Tortugas, Florida.Proc. U.S. Nat. Mus. 108:137–179.Google Scholar
  57. Wolda, H. 1981. Similarity indices, sample size and diversity.Oecologia 50:296–302.CrossRefGoogle Scholar
  58. Youngbluth, M. J. 1980. Daily, seasonal, and annual fluctuations among zooplankton populations in an unpolluted tropical embayment.Estuarine Coastal Mar. Sci. 10:265–287.CrossRefGoogle Scholar
  59. Zaret, T. M., andJ. S. Suffern. 1976. Vertical migration in zooplankton as a predator avoidance mechanism.Limnol. Oceanogr. 21:804–813.Google Scholar

Copyright information

© Estuarine Research Federation 1984

Authors and Affiliations

  • Rolland S. Fulton
    • 1
  1. 1.Duke University Marine LaboratoryBeaufort

Personalised recommendations